IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6612-d911265.html
   My bibliography  Save this article

Life-Cycle Assessment of Bio-Jet Fuel Production from Waste Cooking Oil via Hydroconversion

Author

Listed:
  • Zongwei Zhang

    (College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China)

  • Keheng Wei

    (Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, China)

  • Junqi Li

    (Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, China)

  • Zihan Wang

    (Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, China)

Abstract

A life-cycle assessment of bio-jet fuel from waste cooking oil (WCO) produced by hydrotreatment was performed and compared with petroleum-derived jet fuel. This study aimed to evaluate the sustainability and find out the bottleneck restricting the development of WCO-based jet fuel production. The carbon intensity of the WCO-based bio-jet fuel was 63.7% lower compared to the conventional jet fuel, and the proportion of greenhouse gas (GHG) emissions caused by hydrogen in the WCO was 18.7%. The feedstock stage proportion of GHG emissions of first-, second-, and third-generation biofuels increased. A sensitivity analysis found that the transportation distance of WCO was more sensitive to GHG emissions, and it is important to develop a detailed plan for feedstock collection. A scenario analysis was also performed according to China’s energy structure and hydrogen sources. Although the electric power structure derived from renewable energy will increase GHG emissions in the immediate future, it will eventually reduce emissions due to technical progress by 2050. The preparation of jet fuel from WCO can not only recycle waste but can also contribute to emission reduction for the aviation industry, which is a potential sustainable and feasible aviation fuel route.

Suggested Citation

  • Zongwei Zhang & Keheng Wei & Junqi Li & Zihan Wang, 2022. "Life-Cycle Assessment of Bio-Jet Fuel Production from Waste Cooking Oil via Hydroconversion," Energies, MDPI, vol. 15(18), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6612-:d:911265
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6612/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6612/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Lili & Ou, Xunmin & Chang, Shiyan, 2016. "Life-cycle greenhouse gas emission and energy use of bioethanol produced from corn stover in China: Current perspectives and future prospectives," Energy, Elsevier, vol. 115(P1), pages 303-313.
    2. Barbera, Elena & Naurzaliyev, Rustem & Asiedu, Alexander & Bertucco, Alberto & Resurreccion, Eleazer P. & Kumar, Sandeep, 2020. "Techno-economic analysis and life-cycle assessment of jet fuels production from waste cooking oil via in situ catalytic transfer hydrogenation," Renewable Energy, Elsevier, vol. 160(C), pages 428-449.
    3. Kreutz, Thomas G. & Larson, Eric D. & Elsido, Cristina & Martelli, Emanuele & Greig, Chris & Williams, Robert H., 2020. "Techno-economic prospects for producing Fischer-Tropsch jet fuel and electricity from lignite and woody biomass with CO2 capture for EOR," Applied Energy, Elsevier, vol. 279(C).
    4. Ringsred, Anna & van Dyk, Susan & Saddler, John (Jack), 2021. "Life-cycle analysis of drop-in biojet fuel produced from British Columbia forest residues and wood pellets via fast-pyrolysis," Applied Energy, Elsevier, vol. 287(C).
    5. Cherubini, Francesco & Bird, Neil D. & Cowie, Annette & Jungmeier, Gerfried & Schlamadinger, Bernhard & Woess-Gallasch, Susanne, 2009. "Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations," Resources, Conservation & Recycling, Elsevier, vol. 53(8), pages 434-447.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Yang & Ji-Qin Ni & Weiqing Bao & Lei Zhao & Guang Hui Xie, 2019. "Potential Reductions in Greenhouse Gas and Fine Particulate Matter Emissions Using Corn Stover for Ethanol Production in China," Energies, MDPI, vol. 12(19), pages 1-14, September.
    2. Rives, Jesús & Fernandez-Rodriguez, Ivan & Gabarrell, Xavier & Rieradevall, Joan, 2012. "Environmental analysis of cork granulate production in Catalonia – Northern Spain," Resources, Conservation & Recycling, Elsevier, vol. 58(C), pages 132-142.
    3. Luo, Erga & Yan, Ru & He, Yaping & Han, Zhen & Feng, Yiyu & Qian, Wenrong & Li, Jinkai, 2024. "Does biogas industrial policy promote the industrial transformation?," Resources Policy, Elsevier, vol. 88(C).
    4. Seber, Gonca & Escobar, Neus & Valin, Hugo & Malina, Robert, 2022. "Uncertainty in life cycle greenhouse gas emissions of sustainable aviation fuels from vegetable oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
    6. Zygmunt Stanula & Marek Wieruszewski & Adam Zydroń & Krzysztof Adamowicz, 2023. "Optimizing Forest-Biomass-Distribution Logistics from a Multi-Level Perspective—Review," Energies, MDPI, vol. 16(24), pages 1-17, December.
    7. Giovanni De Feo & Aurelio Di Domenico & Carmen Ferrara & Salvatore Abate & Libero Sesti Osseo, 2020. "Evolution of Waste Cooking Oil Collection in an Area with Long-Standing Waste Management Problems," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    8. Raja Chowdhury & Nidia Caetano & Matthew J. Franchetti & Kotnoor Hariprasad, 2023. "Life Cycle Based GHG Emissions from Algae Based Bioenergy with a Special Emphasis on Climate Change Indicators and Their Uses in Dynamic LCA: A Review," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    9. David J. Murphy & Marco Raugei & Michael Carbajales-Dale & Brenda Rubio Estrada, 2022. "Energy Return on Investment of Major Energy Carriers: Review and Harmonization," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    10. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2021. "Energy return on investment (EROI) of biomass conversion systems in China: Meta-analysis focused on system boundary unification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Pettersson, Malin & Olofsson, Johanna & Börjesson, Pål & Björnsson, Lovisa, 2022. "Reductions in greenhouse gas emissions through innovative co-production of bio-oil in combined heat and power plants," Applied Energy, Elsevier, vol. 324(C).
    12. Aleksandras Chlebnikovas & Dainius Paliulis & Artūras Kilikevičius & Jaroslaw Selech & Jonas Matijošius & Kristina Kilikevičienė & Darius Vainorius, 2021. "Possibilities and Generated Emissions of Using Wood and Lignin Biofuel for Heat Production," Energies, MDPI, vol. 14(24), pages 1-18, December.
    13. Cambero, Claudia & Hans Alexandre, Mariane & Sowlati, Taraneh, 2015. "Life cycle greenhouse gas analysis of bioenergy generation alternatives using forest and wood residues in remote locations: A case study in British Columbia, Canada," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 59-72.
    14. Liu, Huacai & Huang, Yanqin & Yuan, Hongyou & Yin, Xiuli & Wu, Chuangzhi, 2018. "Life cycle assessment of biofuels in China: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 301-322.
    15. Sarah Olson & Małgorzata Szafraniec & Jukka Heinonen & Áróra Árnadóttir, 2024. "Concerned about Climate Change and Ready to Take Action? An Analysis of the Pro-Climate Actions Individuals Are Motivated to Take to Lower Their Carbon Footprints," Sustainability, MDPI, vol. 16(16), pages 1-29, August.
    16. Weiwei Wang, 2023. "Integrated Assessment of Economic Supply and Environmental Effects of Biomass Co-Firing in Coal Power Plants: A Case Study of Jiangsu, China," Energies, MDPI, vol. 16(6), pages 1-22, March.
    17. Pasawat Sanchumpu & Wiriya Suaili & Siwakorn Nonsawang & Chaiyan Junsiri & Peeranat Ansuree & Kittipong Laloon, 2024. "Biomass Pellet Processing from Sugar Industry Byproducts: A Study on Pelletizing Behavior and Energy Usage," Sustainability, MDPI, vol. 16(14), pages 1-26, July.
    18. Cherubini, Francesco & Strømman, Anders Hammer & Ulgiati, Sergio, 2011. "Influence of allocation methods on the environmental performance of biorefinery products—A case study," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1070-1077.
    19. Tang, Aikun & Cai, Tao & Li, Chong & Zhou, Chen & Gao, Lingjie, 2024. "Flame visualization and spectral analysis of combustion instability in a premixed methane/air-fueled micro-combustor," Energy, Elsevier, vol. 294(C).
    20. Braun, Matthias & Grimme, Wolfgang & Oesingmann, Katrin, 2024. "Pathway to net zero: Reviewing sustainable aviation fuels, environmental impacts and pricing," Journal of Air Transport Management, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6612-:d:911265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.