IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6370-d903313.html
   My bibliography  Save this article

Uniformity of Supply Air in the Plenum for Under-Floor Air Distribution Ventilation in a Circular Conference Room: A CFD Study

Author

Listed:
  • Xiaolei Fan

    (Thermal Engineering Department, Shandong Jianzhu University, Jinan 250101, China)

  • Tao Yu

    (Thermal Engineering Department, Shandong Jianzhu University, Jinan 250101, China)

  • Peng Liu

    (Department of Architecture, Materials, and Structures, SINTEF Community, NO-7465 Trondheim, Norway)

  • Xiangdong Li

    (Shandong Provincial Architecture Design & Research Institute Co., Ltd., Jinan 250014, China)

Abstract

Underfloor air distribution (UFAD) systems are increasingly used for their advantages in improving energy savings, indoor air quality, and thermal comfort. In UFAD systems, an underfloor plenum delivers conditioned air to the air supply diffusers. The distribution of internal air velocity and static pressure in plenums determines the uniformity of the airflow to the occupied zones. As a result, the plenum has a detrimental effect on the characteristics of the supply air and, thus, the resulting indoor air quality and thermal comfort. Nevertheless, most existing studies on underfloor plenums focused on small-scale plenums with a single internal air duct. Large plenums and multiple air ducts in UFAD equipped in large premises are underexplored. In this study, a circular underfloor plenum with a large scale (radius of 15 m, height difference of 0.9−2.9 m) and 503 under-seat diffusers in a conference room was studied using computational fluid dynamics (CFD) simulation (ANSYS Fluent (16.0)). The distributions of airflow velocity and static pressure inside the plenum were analyzed and compared to one concentrated air supply mode and three uniform air supply modes. Based on the air velocity at the center of under-seat diffusers, the outgoing airflow uniformity from the diffusers under four cases was evaluated by the index of air velocity uniformity. The results showed that the multiple supply ducts with bottom air outlets yielded the best uniformity of supply air. The findings of this paper are expected to provide a technical basis for realizing the optimal design of the UFAD system in terms of uniformity of supply air.

Suggested Citation

  • Xiaolei Fan & Tao Yu & Peng Liu & Xiangdong Li, 2022. "Uniformity of Supply Air in the Plenum for Under-Floor Air Distribution Ventilation in a Circular Conference Room: A CFD Study," Energies, MDPI, vol. 15(17), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6370-:d:903313
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6370/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6370/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tradat, Mohammad I. & Manaserh, Yaman “Mohammad Ali” & Sammakia, Bahgat G. & Hoang, Cong Hiep & Alissa, Husam A., 2021. "An experimental and numerical investigation of novel solution for energy management enhancement in data centers using underfloor plenum porous obstructions," Applied Energy, Elsevier, vol. 289(C).
    2. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    3. Huang, Ming-Hua & Chen, Lei & Lei, Le & He, Peng & Cao, Jun-Ji & He, Ya-Ling & Feng, Zhen-Ping & Tao, Wen-Quan, 2020. "Experimental and numerical studies for applying hybrid solar chimney and photovoltaic system to the solar-assisted air cleaning system," Applied Energy, Elsevier, vol. 269(C).
    4. Calautit, John Kaiser & Hughes, Ben Richard & Nasir, Diana SNM, 2017. "Climatic analysis of a passive cooling technology for the built environment in hot countries," Applied Energy, Elsevier, vol. 186(P3), pages 321-335.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manaserh, Yaman M. & Tradat, Mohammad I. & Bani-Hani, Dana & Alfallah, Aseel & Sammakia, Bahgat G. & Nemati, Kourosh & Seymour, Mark J., 2022. "Machine learning assisted development of IT equipment compact models for data centers energy planning," Applied Energy, Elsevier, vol. 305(C).
    2. Setareh, Milad, 2021. "Comprehensive mathematical study on solar chimney powerplant," Renewable Energy, Elsevier, vol. 175(C), pages 470-485.
    3. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    4. Pantua, Conrad Allan Jay & Calautit, John Kaiser & Wu, Yupeng, 2021. "Sustainability and structural resilience of building integrated photovoltaics subjected to typhoon strength winds," Applied Energy, Elsevier, vol. 301(C).
    5. Ye, Zhongnan & Cheng, Kuangly & Hsu, Shu-Chien & Wei, Hsi-Hsien & Cheung, Clara Man, 2021. "Identifying critical building-oriented features in city-block-level building energy consumption: A data-driven machine learning approach," Applied Energy, Elsevier, vol. 301(C).
    6. Meinrenken, Christoph J. & Mehmani, Ali, 2019. "Concurrent optimization of thermal and electric storage in commercial buildings to reduce operating cost and demand peaks under time-of-use tariffs," Applied Energy, Elsevier, vol. 254(C).
    7. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    8. Gourlis, Georgios & Kovacic, Iva, 2017. "Building Information Modelling for analysis of energy efficient industrial buildings – A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 953-963.
    9. Javanroodi, Kavan & Mahdavinejad, Mohammadjavad & Nik, Vahid M., 2018. "Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate," Applied Energy, Elsevier, vol. 231(C), pages 714-746.
    10. Gourlis, Georgios & Kovacic, Iva, 2016. "A study on building performance analysis for energy retrofit of existing industrial facilities," Applied Energy, Elsevier, vol. 184(C), pages 1389-1399.
    11. Joaquín Fuentes-del-Burgo & Elena Navarro-Astor & Nuno M. M. Ramos & João Poças Martins, 2021. "Exploring the Critical Barriers to the Implementation of Renewable Technologies in Existing University Buildings," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    12. Ma, Minda & Cai, Wei & Cai, Weiguang, 2018. "Carbon abatement in China's commercial building sector: A bottom-up measurement model based on Kaya-LMDI methods," Energy, Elsevier, vol. 165(PA), pages 350-368.
    13. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. Karunathilake, Hirushie & Hewage, Kasun & Sadiq, Rehan, 2018. "Opportunities and challenges in energy demand reduction for Canadian residential sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2005-2016.
    15. Maryam Khazaee & Siamak Hosseinzadeh & Saeed Khorrami & Davide Astiaso Garcia & Mosè Ricci, 2024. "Volumetric Add-On Retrofit Strategy with Multi-Benefit Approach toward Nearly Zero Energy Buildings Target," Sustainability, MDPI, vol. 16(13), pages 1-21, July.
    16. Alan Kabanshi & Gasper Choonya & Arman Ameen & Wei Liu & Enock Mulenga, 2023. "Windows of Opportunities: Orientation, Sizing and PV-Shading of the Glazed Area to Reduce Cooling Energy Demand in Sub-Sahara Africa," Energies, MDPI, vol. 16(9), pages 1-14, April.
    17. Remizov, Alexey & Memon, Shazim Ali & Kim, Jong R., 2024. "Novel building energy performance-based climate zoning enhanced with spatial constraint," Applied Energy, Elsevier, vol. 355(C).
    18. Rashidi, Saman & Esfahani, Javad Abolfazli & Karimi, Nader, 2018. "Porous materials in building energy technologies—A review of the applications, modelling and experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 229-247.
    19. Li, Jun & Ng, S. Thomas & Skitmore, Martin, 2017. "Review of low-carbon refurbishment solutions for residential buildings with particular reference to multi-story buildings in Hong Kong," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 393-407.
    20. Shoeibi, Shahin & Kargarsharifabad, Hadi & Mirjalily, Seyed Ali Agha & Zargarazad, Mojtaba, 2021. "Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6370-:d:903313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.