IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6328-d902120.html
   My bibliography  Save this article

Review and Techno-Economic Analysis of Emerging Thermo-Mechanical Energy Storage Technologies

Author

Listed:
  • Khem Raj Gautam

    (Vestas aircoil A/S, Smed Hansens Vej 13, 6940 Lem, Denmark
    These authors contributed equally to this work.)

  • Gorm Brunn Andresen

    (Department of Mechanical Engineering, Aarhus University, 8000 Aarhus, Denmark
    These authors contributed equally to this work.
    Also associated with iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, 8000 Aarhus, Denmark.)

  • Marta Victoria

    (Department of Mechanical Engineering, Aarhus University, 8000 Aarhus, Denmark
    These authors contributed equally to this work.
    Also associated with iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, 8000 Aarhus, Denmark.)

Abstract

Thermo-mechanical energy storage can be a cost-effective solution to provide flexibility and balance highly renewable energy systems. Here, we present a concise review of emerging thermo-mechanical energy storage solutions focusing on their commercial development. Under a unified framework, we review technologies that have proven to work conceptually through project demonstration at a scale above 1 MW by describing the current state of commercial development, quantifying techno-economic parameters, outlining the challenges, and assessing each technology’s potential for commercial viability. The levelized cost of storage for thermo-mechanical energy storage at storage duration between 8 h and 1 week is cheaper than that of lithium-ion batteries and hydrogen storage; however, energy storage for such duration does not pay for itself at the current renewable penetration levels. For medium-term energy storage to be viable, at the realistic storage cost of 15 USD/kWh to 40 USD/kWh, the investment cost for power components should decrease to one-fifth of the current costs. Thermo-mechanical energy storage can be economically viable at the current investment costs in off-grid systems only when the marginal cost of alternative fuel exceeds 100 USD/MWh. We identified the cost ratio (charge power cost/discharge power cost) and the discharge efficiency as the critical technology-related performance parameters. Other external factors such as wind and solar fractions, demand, interconnections, sector coupling, and market structure play an important role in determining the economic feasibility of thermo-mechanical energy storage.

Suggested Citation

  • Khem Raj Gautam & Gorm Brunn Andresen & Marta Victoria, 2022. "Review and Techno-Economic Analysis of Emerging Thermo-Mechanical Energy Storage Technologies," Energies, MDPI, vol. 15(17), pages 1-28, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6328-:d:902120
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6328/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6328/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farah, Sleiman & Andresen, Gorm Bruun, 2024. "Investment-based optimisation of energy storage design parameters in a grid-connected hybrid renewable energy system," Applied Energy, Elsevier, vol. 355(C).
    2. Emanuele Nadalon & Ronelly De Souza & Melchiorre Casisi & Mauro Reini, 2023. "Part-Load Energy Performance Assessment of a Pumped Thermal Energy Storage System for an Energy Community," Energies, MDPI, vol. 16(15), pages 1-30, July.
    3. Li Sun & Jierong Liang & Tingting Zhu, 2023. "A Numerical Study of Vapor–Liquid Equilibrium in Binary Refrigerant Mixtures Based on 2,3,3,3-Tetrafluoroprop-1-ene," Sustainability, MDPI, vol. 15(19), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirchbacher, Florian & Biegger, Philipp & Miltner, Martin & Lehner, Markus & Harasek, Michael, 2018. "A new methanation and membrane based power-to-gas process for the direct integration of raw biogas – Feasability and comparison," Energy, Elsevier, vol. 146(C), pages 34-46.
    2. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    3. Andrea Amado & Koji Kotani & Makoto Kakinaka & Shunsuke Managi, 2023. "Carbon tax for cleaner-energy transition: A vignette experiment in Japan," Working Papers SDES-2023-6, Kochi University of Technology, School of Economics and Management, revised Oct 2023.
    4. Chen, Yang & Odukomaiya, Adewale & Kassaee, Saiid & O’Connor, Patrick & Momen, Ayyoub M. & Liu, Xiaobing & Smith, Brennan T., 2019. "Preliminary analysis of market potential for a hydropneumatic ground-level integrated diverse energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 1237-1247.
    5. Nitsch, Felix & Deissenroth-Uhrig, Marc & Schimeczek, Christoph & Bertsch, Valentin, 2021. "Economic evaluation of battery storage systems bidding on day-ahead and automatic frequency restoration reserves markets," Applied Energy, Elsevier, vol. 298(C).
    6. Nayak-Luke, Richard & Bañares-Alcántara, René & Collier, Sam, 2021. "Quantifying network flexibility requirements in terms of energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 869-882.
    7. Lukas Wienholt & Ulf Philipp Müller & Julian Bartels, 2018. "Optimal Sizing and Spatial Allocation of Storage Units in a High-Resolution Power System Model," Energies, MDPI, vol. 11(12), pages 1-17, December.
    8. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Hyrzyński, Rafał & Ziółkowski, Paweł & Gotzman, Sylwia & Kraszewski, Bartosz & Ochrymiuk, Tomasz & Badur, Janusz, 2021. "Comprehensive thermodynamic analysis of the CAES system coupled with the underground thermal energy storage taking into account global, central and local level of energy conversion," Renewable Energy, Elsevier, vol. 169(C), pages 379-403.
    10. Machado, Renato Haddad Simões & Rego, Erik Eduardo & Udaeta, Miguel Edgar Morales & Nascimento, Viviane Tavares, 2022. "Estimating the adequacy revenue considering long-term reliability in a renewable power system," Energy, Elsevier, vol. 243(C).
    11. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    12. Gulin, Marko & Pavlović, Tomislav & Vašak, Mario, 2016. "Photovoltaic panel and array static models for power production prediction: Integration of manufacturers’ and on-line data," Renewable Energy, Elsevier, vol. 97(C), pages 399-413.
    13. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
    14. Han, Rui & Xing, Shuang & Wu, Xueqian & Pang, Caihong & Lu, Shuangchun & Su, Yun & Liu, Qingling & Song, Chunfeng & Gao, Jihui, 2022. "Relevant influence of alkali carbonate doping on the thermochemical energy storage of Ca-based natural minerals during CaO/CaCO3 cycles," Renewable Energy, Elsevier, vol. 181(C), pages 267-277.
    15. Handriyanti Diah Puspitarini & Baptiste François & Marco Baratieri & Casey Brown & Mattia Zaramella & Marco Borga, 2020. "Complementarity between Combined Heat and Power Systems, Solar PV and Hydropower at a District Level: Sensitivity to Climate Characteristics along an Alpine Transect," Energies, MDPI, vol. 13(16), pages 1-19, August.
    16. Mohamed A Mohamed & Ali M Eltamaly & Abdulrahman I Alolah, 2016. "PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-22, August.
    17. Amro M Elshurafa & Abdel Rahman Muhsen, 2019. "The Upper Limit of Distributed Solar PV Capacity in Riyadh: A GIS-Assisted Study," Sustainability, MDPI, vol. 11(16), pages 1-20, August.
    18. Muhammad Sadam Hussain & Kangwook Cho & Soo-jin Park, 2024. "Resource Adequacy and Integration of Renewables in Light of US, EU, and Pakistan’s Evolving Power Sector," Energies, MDPI, vol. 17(20), pages 1-45, October.
    19. Yekui Chang & Rao Liu & Yu Ba & Weidong Li, 2018. "A New Control Logic for a Wind-Area on the Balancing Authority Area Control Error Limit Standard for Load Frequency Control," Energies, MDPI, vol. 11(1), pages 1-20, January.
    20. Stenzel, Peter & Linssen, Jochen, 2016. "Concept and potential of pumped hydro storage in federal waterways," Applied Energy, Elsevier, vol. 162(C), pages 486-493.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6328-:d:902120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.