IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6146-d896421.html
   My bibliography  Save this article

Fault Detection Method via k -Nearest Neighbor Normalization and Weight Local Outlier Factor for Circulating Fluidized Bed Boiler with Multimode Process

Author

Listed:
  • Minseok Kim

    (Department of Electrical and Electronics Engineering, Pusan National University, Busan 46241, Korea)

  • Seunghwan Jung

    (Department of Electrical and Electronics Engineering, Pusan National University, Busan 46241, Korea)

  • Baekcheon Kim

    (Department of Electrical and Electronics Engineering, Pusan National University, Busan 46241, Korea)

  • Jinyong Kim

    (Department of Electrical and Electronics Engineering, Pusan National University, Busan 46241, Korea)

  • Eunkyeong Kim

    (Department of Electrical and Electronics Engineering, Pusan National University, Busan 46241, Korea)

  • Jonggeun Kim

    (Artificial Intelligence Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Korea)

  • Sungshin Kim

    (Department of Electrical and Electronics Engineering, Pusan National University, Busan 46241, Korea)

Abstract

In modern complex industrial processes, mode changes cause unplanned shutdowns, potentially shortening the lifespan of key equipment and incurring significant maintenance costs. To avoid this problem, a method that can detect the fault of equipment operating in various modes is required. Therefore, we propose a novel fault detection method that uses the k -nearest neighbor normalization-based weight local outlier factor (WLOF). The proposed method performs local normalization using neighbors to consider possible mode changes in the normal data and WLOF is used for fault detection. In contrast to statistical methods, such as principal component analysis (PCA) and independent component analysis (ICA), the local outlier factor (LOF) uses the density of neighbors. However, because LOF is significantly affected by the distance between its neighbors, the weight is multiplied proportionally to the distance between each neighbor to improve the fault detection performance of the LOF. The efficiency of the proposed method was evaluated using a multimode numerical case and a circulating fluidized bed boiler. The experimental results show that the proposed method outperforms conventional PCA, kernel PCA (KPCA), k -nearest neighbor ( k NN), and LOF. In particular, the proposed method improved the detection accuracy by 20% compared with conventional methods. Therefore, the proposed method can be applied to a real process operating in multiple modes.

Suggested Citation

  • Minseok Kim & Seunghwan Jung & Baekcheon Kim & Jinyong Kim & Eunkyeong Kim & Jonggeun Kim & Sungshin Kim, 2022. "Fault Detection Method via k -Nearest Neighbor Normalization and Weight Local Outlier Factor for Circulating Fluidized Bed Boiler with Multimode Process," Energies, MDPI, vol. 15(17), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6146-:d:896421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6146/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6146/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rostek, Kornel & Morytko, Łukasz & Jankowska, Anna, 2015. "Early detection and prediction of leaks in fluidized-bed boilers using artificial neural networks," Energy, Elsevier, vol. 89(C), pages 914-923.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    2. Bo Gao & Chunsheng Wang & Yukun Hu & C. K. Tan & Paul Alun Roach & Liz Varga, 2018. "Function Value-Based Multi-Objective Optimisation of Reheating Furnace Operations Using Hooke-Jeeves Algorithm," Energies, MDPI, vol. 11(9), pages 1-18, September.
    3. Rodríguez-López, Miguel A. & López-González, Luis M. & López-Ochoa, Luis M. & Las-Heras-Casas, Jesús, 2016. "Development of indicators for the detection of equipment malfunctions and degradation estimation based on digital signals (alarms and events) from operation SCADA," Renewable Energy, Elsevier, vol. 99(C), pages 224-236.
    4. Brkovic, Aleksandar & Gajic, Dragoljub & Gligorijevic, Jovan & Savic-Gajic, Ivana & Georgieva, Olga & Di Gennaro, Stefano, 2017. "Early fault detection and diagnosis in bearings for more efficient operation of rotating machinery," Energy, Elsevier, vol. 136(C), pages 63-71.
    5. Fan, He & Zhang, Yu-fei & Su, Zhi-gang & Wang, Ben, 2017. "A dynamic mathematical model of an ultra-supercritical coal fired once-through boiler-turbine unit," Applied Energy, Elsevier, vol. 189(C), pages 654-666.
    6. Cao, Li-hua & Yu, Jing-wen & Li, Yong, 2016. "Study on the determination method of the normal value of relative internal efficiency of the last stage group of steam turbine," Energy, Elsevier, vol. 98(C), pages 101-107.
    7. Yu, Jungwon & Yoo, Jaeyeong & Jang, Jaeyel & Park, June Ho & Kim, Sungshin, 2017. "A novel plugged tube detection and identification approach for final super heater in thermal power plant using principal component analysis," Energy, Elsevier, vol. 126(C), pages 404-418.
    8. Bi, Yubo & Wu, Qiulan & Wang, Shilu & Shi, Jihao & Cong, Haiyong & Ye, Lili & Gao, Wei & Bi, Mingshu, 2023. "Hydrogen leakage location prediction at hydrogen refueling stations based on deep learning," Energy, Elsevier, vol. 284(C).
    9. Du, Zhimin & Chen, Ling & Jin, Xinqiao, 2017. "Data-driven based reliability evaluation for measurements of sensors in a vapor compression system," Energy, Elsevier, vol. 122(C), pages 237-248.
    10. Jungwon Yu & Jaeyel Jang & Jaeyeong Yoo & June Ho Park & Sungshin Kim, 2018. "A Fault Isolation Method via Classification and Regression Tree-Based Variable Ranking for Drum-Type Steam Boiler in Thermal Power Plant," Energies, MDPI, vol. 11(5), pages 1-19, May.
    11. Salman Khalid & Jinwoo Song & Izaz Raouf & Heung Soo Kim, 2023. "Advances in Fault Detection and Diagnosis for Thermal Power Plants: A Review of Intelligent Techniques," Mathematics, MDPI, vol. 11(8), pages 1-28, April.
    12. Li, Guolong & Li, Yanjun & Fang, Chengyue & Su, Jian & Wang, Haotong & Sun, Shengdi & Zhang, Guolei & Shi, Jianxin, 2023. "Research on fault diagnosis of supercharged boiler with limited data based on few-shot learning," Energy, Elsevier, vol. 281(C).
    13. Indrawan, Natarianto & Shadle, Lawrence J. & Breault, Ronald W. & Panday, Rupendranath & Chitnis, Umesh K., 2021. "Data analytics for leak detection in a subcritical boiler," Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6146-:d:896421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.