Thermal Degradation and Organic Chlorine Removal from Mixed Plastic Wastes
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Park, Ki-Bum & Oh, Seung-Jin & Begum, Guzelciftci & Kim, Joo-Sik, 2018. "Production of clean oil with low levels of chlorine and olefins in a continuous two-stage pyrolysis of a mixture of waste low-density polyethylene and polyvinyl chloride," Energy, Elsevier, vol. 157(C), pages 402-411.
- Kunwar, Bidhya & Moser, Bryan R. & Chandrasekaran, Sriraam R. & Rajagopalan, Nandakishore & Sharma, Brajendra K., 2016. "Catalytic and thermal depolymerization of low value post-consumer high density polyethylene plastic," Energy, Elsevier, vol. 111(C), pages 884-892.
- Fivga, Antzela & Dimitriou, Ioanna, 2018. "Pyrolysis of plastic waste for production of heavy fuel substitute: A techno-economic assessment," Energy, Elsevier, vol. 149(C), pages 865-874.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Park, Ki-Bum & Jeong, Yong-Seong & Guzelciftci, Begum & Kim, Joo-Sik, 2019. "Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene," Energy, Elsevier, vol. 166(C), pages 343-351.
- Jiao, Shouhui & Wang, Feng & Wang, Lili & Biney, Bernard Wiafe & Liu, He & Chen, Kun & Guo, Aijun & Sun, Lanyi & Wang, Zongxian, 2022. "Systematic identification and distribution analysis of olefins in FCC slurry oil," Energy, Elsevier, vol. 239(PA).
- Park, Ki-Bum & Choi, Min-Jun & Chae, Da-Yeong & Jung, Jaeheum & Kim, Joo-Sik, 2022. "Separate two-step and continuous two-stage pyrolysis of a waste plastic mixture to produce a chlorine-depleted oil," Energy, Elsevier, vol. 244(PA).
- Fan, Liangliang & Liu, Lei & Xiao, Zhiguo & Su, Zheyang & Huang, Pei & Peng, Hongyu & Lv, Sen & Jiang, Haiwei & Ruan, Roger & Chen, Paul & Zhou, Wenguang, 2021. "Comparative study of continuous-stirred and batch microwave pyrolysis of linear low-density polyethylene in the presence/absence of HZSM-5," Energy, Elsevier, vol. 228(C).
- Anna Matuszewska & Adam Hańderek & Maciej Paczuski & Krzysztof Biernat, 2021. "Hydrocarbon Fractions from Thermolysis of Waste Plastics as Components of Engine Fuels," Energies, MDPI, vol. 14(21), pages 1-14, November.
- Farrell, C.C. & Osman, A.I. & Doherty, R. & Saad, M. & Zhang, X. & Murphy, A. & Harrison, J. & Vennard, A.S.M. & Kumaravel, V. & Al-Muhtaseb, A.H. & Rooney, D.W., 2020. "Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
- Zhao, Xiang & You, Fengqi, 2021. "Waste respirator processing system for public health protection and climate change mitigation under COVID-19 pandemic: Novel process design and energy, environmental, and techno-economic perspectives," Applied Energy, Elsevier, vol. 283(C).
- Anna Matuszewska & Marlena Owczuk & Krzysztof Biernat, 2022. "Current Trends in Waste Plastics’ Liquefaction into Fuel Fraction: A Review," Energies, MDPI, vol. 15(8), pages 1-32, April.
- Zhao, Xiang & Klemeš, Jiří Jaromír & Fengqi You,, 2022. "Energy and environmental sustainability of waste personal protective equipment (PPE) treatment under COVID-19," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Lopez, Gartzen & Artetxe, Maite & Amutio, Maider & Bilbao, Javier & Olazar, Martin, 2017. "Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 346-368.
- Choudhary, Rajesh & Mukhija, Abhishek & Sharma, Subhash & Choudhary, Rohitash & Chand, Ami & Dewangan, Ashok K. & Gaurav, Gajendra Kumar & Klemeš, Jiří Jaromír, 2023. "Energy-saving COVID–19 biomedical plastic waste treatment using the thermal - Catalytic pyrolysis," Energy, Elsevier, vol. 264(C).
- Anastasia Zabaniotou & Ioannis Vaskalis, 2023. "Economic Assessment of Polypropylene Waste (PP) Pyrolysis in Circular Economy and Industrial Symbiosis," Energies, MDPI, vol. 16(2), pages 1-26, January.
- Zhang, Yayun & Duan, Dengle & Lei, Hanwu & Villota, Elmar & Ruan, Roger, 2019. "Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- King, Peter, 2018. "Fishing for litter: A cost-benefit analysis of how to abate ocean pollution," MPRA Paper 92298, University Library of Munich, Germany.
- Kirtika Kohli & Sriraam R. Chandrasekaran & Ravindra Prajapati & Bidhya Kunwar & Sultan Al-Salem & Bryan R. Moser & Brajendra K. Sharma, 2022. "Pyrolytic Depolymerization Mechanisms for Post-Consumer Plastic Wastes," Energies, MDPI, vol. 15(23), pages 1-25, November.
- Huang, Weijia & Zheng, Danxing & Chen, Xiaohui & Shi, Lin & Dai, Xiaoye & Chen, Youhui & Jing, Xuye, 2020. "Standard thermodynamic properties for the energy grade evaluation of fossil fuels and renewable fuels," Renewable Energy, Elsevier, vol. 147(P1), pages 2160-2170.
- Katleho Keneuwe Khoaele & Oluwatoyin Joseph Gbadeyan & Viren Chunilall & Bruce Sithole, 2023. "The Devastation of Waste Plastic on the Environment and Remediation Processes: A Critical Review," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
- Pavel A. Kots & Brandon C. Vance & Caitlin M. Quinn & Cong Wang & Dionisios G. Vlachos, 2023. "A two-stage strategy for upcycling chlorine-contaminated plastic waste," Nature Sustainability, Nature, vol. 6(10), pages 1258-1267, October.
- Park, Ki-Bum & Oh, Seung-Jin & Begum, Guzelciftci & Kim, Joo-Sik, 2018. "Production of clean oil with low levels of chlorine and olefins in a continuous two-stage pyrolysis of a mixture of waste low-density polyethylene and polyvinyl chloride," Energy, Elsevier, vol. 157(C), pages 402-411.
More about this item
Keywords
mixed plastic wastes; thermal degradation; organic chlorine removal; kinetic modeling; heat content; FTIR spectroscopy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6058-:d:893828. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.