IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p6058-d893828.html
   My bibliography  Save this article

Thermal Degradation and Organic Chlorine Removal from Mixed Plastic Wastes

Author

Listed:
  • Zhuo Xu

    (Department of Mechanical Engineering, Michigan Technological University, Houghton, MI 49931, USA)

  • Victor Ierulli

    (Department of Mechanical Engineering, Michigan Technological University, Houghton, MI 49931, USA)

  • Ezra Bar-Ziv

    (Department of Mechanical Engineering, Michigan Technological University, Houghton, MI 49931, USA)

  • Armando G. McDonald

    (Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, ID 83844, USA)

Abstract

Plastic waste accumulation has been growing due to the increase in plastic generation and the lack of infrastructure for recycling. One of the approaches is to treat the mixed plastic waste (MPW) through thermal processes to produce feedstocks for other applications. However, the presence of polyvinyl chloride (PVC) in MPW would produce HCl during processing and has negative impacts (emission, catalyst poisoning, etc.). In addition, due to the high heterogeneity of MPW, it is difficult to generate consistent experimental data. In this study, MPW was homogenized through double compounding–extrusion and then formed into a sheet to be treated at 400 °C. The solid products at various mass losses were characterized by heat and chlorine content, Fourier-transform infrared (FTIR) spectroscopy, and elemental composition analysis. It was found that the thermal degradation of MPW started at ~260 °C. The chlorine removal efficiency increased with mass loss and reached an asymptotic value of ~84% at ~28% mass loss, and the remaining chlorine can be attributed to inorganic sources. A PVC de-chlorination model was developed for MPW using TGA data for PVC and MPW to determine organic chlorine removal efficiency. These results show that PVC de-chlorination was not affected by other plastics at this temperature. As the mass loss increases, the heat content first increases and then decreases. It was found that mass loss is a universal parameter for organic chlorine removal efficiency and heat content. The elemental composition analysis and FTIR spectroscopy also shed more light into the chemical changes during MPW thermal degradation.

Suggested Citation

  • Zhuo Xu & Victor Ierulli & Ezra Bar-Ziv & Armando G. McDonald, 2022. "Thermal Degradation and Organic Chlorine Removal from Mixed Plastic Wastes," Energies, MDPI, vol. 15(16), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6058-:d:893828
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/6058/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/6058/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Ki-Bum & Oh, Seung-Jin & Begum, Guzelciftci & Kim, Joo-Sik, 2018. "Production of clean oil with low levels of chlorine and olefins in a continuous two-stage pyrolysis of a mixture of waste low-density polyethylene and polyvinyl chloride," Energy, Elsevier, vol. 157(C), pages 402-411.
    2. Kunwar, Bidhya & Moser, Bryan R. & Chandrasekaran, Sriraam R. & Rajagopalan, Nandakishore & Sharma, Brajendra K., 2016. "Catalytic and thermal depolymerization of low value post-consumer high density polyethylene plastic," Energy, Elsevier, vol. 111(C), pages 884-892.
    3. Fivga, Antzela & Dimitriou, Ioanna, 2018. "Pyrolysis of plastic waste for production of heavy fuel substitute: A techno-economic assessment," Energy, Elsevier, vol. 149(C), pages 865-874.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Ki-Bum & Jeong, Yong-Seong & Guzelciftci, Begum & Kim, Joo-Sik, 2019. "Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene," Energy, Elsevier, vol. 166(C), pages 343-351.
    2. Jiao, Shouhui & Wang, Feng & Wang, Lili & Biney, Bernard Wiafe & Liu, He & Chen, Kun & Guo, Aijun & Sun, Lanyi & Wang, Zongxian, 2022. "Systematic identification and distribution analysis of olefins in FCC slurry oil," Energy, Elsevier, vol. 239(PA).
    3. Park, Ki-Bum & Choi, Min-Jun & Chae, Da-Yeong & Jung, Jaeheum & Kim, Joo-Sik, 2022. "Separate two-step and continuous two-stage pyrolysis of a waste plastic mixture to produce a chlorine-depleted oil," Energy, Elsevier, vol. 244(PA).
    4. Fan, Liangliang & Liu, Lei & Xiao, Zhiguo & Su, Zheyang & Huang, Pei & Peng, Hongyu & Lv, Sen & Jiang, Haiwei & Ruan, Roger & Chen, Paul & Zhou, Wenguang, 2021. "Comparative study of continuous-stirred and batch microwave pyrolysis of linear low-density polyethylene in the presence/absence of HZSM-5," Energy, Elsevier, vol. 228(C).
    5. Anna Matuszewska & Adam Hańderek & Maciej Paczuski & Krzysztof Biernat, 2021. "Hydrocarbon Fractions from Thermolysis of Waste Plastics as Components of Engine Fuels," Energies, MDPI, vol. 14(21), pages 1-14, November.
    6. Farrell, C.C. & Osman, A.I. & Doherty, R. & Saad, M. & Zhang, X. & Murphy, A. & Harrison, J. & Vennard, A.S.M. & Kumaravel, V. & Al-Muhtaseb, A.H. & Rooney, D.W., 2020. "Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    7. Zhao, Xiang & You, Fengqi, 2021. "Waste respirator processing system for public health protection and climate change mitigation under COVID-19 pandemic: Novel process design and energy, environmental, and techno-economic perspectives," Applied Energy, Elsevier, vol. 283(C).
    8. Anna Matuszewska & Marlena Owczuk & Krzysztof Biernat, 2022. "Current Trends in Waste Plastics’ Liquefaction into Fuel Fraction: A Review," Energies, MDPI, vol. 15(8), pages 1-32, April.
    9. Zhao, Xiang & Klemeš, Jiří Jaromír & Fengqi You,, 2022. "Energy and environmental sustainability of waste personal protective equipment (PPE) treatment under COVID-19," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    10. Lopez, Gartzen & Artetxe, Maite & Amutio, Maider & Bilbao, Javier & Olazar, Martin, 2017. "Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 346-368.
    11. Choudhary, Rajesh & Mukhija, Abhishek & Sharma, Subhash & Choudhary, Rohitash & Chand, Ami & Dewangan, Ashok K. & Gaurav, Gajendra Kumar & Klemeš, Jiří Jaromír, 2023. "Energy-saving COVID–19 biomedical plastic waste treatment using the thermal - Catalytic pyrolysis," Energy, Elsevier, vol. 264(C).
    12. Anastasia Zabaniotou & Ioannis Vaskalis, 2023. "Economic Assessment of Polypropylene Waste (PP) Pyrolysis in Circular Economy and Industrial Symbiosis," Energies, MDPI, vol. 16(2), pages 1-26, January.
    13. Zhang, Yayun & Duan, Dengle & Lei, Hanwu & Villota, Elmar & Ruan, Roger, 2019. "Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. King, Peter, 2018. "Fishing for litter: A cost-benefit analysis of how to abate ocean pollution," MPRA Paper 92298, University Library of Munich, Germany.
    16. Kirtika Kohli & Sriraam R. Chandrasekaran & Ravindra Prajapati & Bidhya Kunwar & Sultan Al-Salem & Bryan R. Moser & Brajendra K. Sharma, 2022. "Pyrolytic Depolymerization Mechanisms for Post-Consumer Plastic Wastes," Energies, MDPI, vol. 15(23), pages 1-25, November.
    17. Huang, Weijia & Zheng, Danxing & Chen, Xiaohui & Shi, Lin & Dai, Xiaoye & Chen, Youhui & Jing, Xuye, 2020. "Standard thermodynamic properties for the energy grade evaluation of fossil fuels and renewable fuels," Renewable Energy, Elsevier, vol. 147(P1), pages 2160-2170.
    18. Katleho Keneuwe Khoaele & Oluwatoyin Joseph Gbadeyan & Viren Chunilall & Bruce Sithole, 2023. "The Devastation of Waste Plastic on the Environment and Remediation Processes: A Critical Review," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    19. Pavel A. Kots & Brandon C. Vance & Caitlin M. Quinn & Cong Wang & Dionisios G. Vlachos, 2023. "A two-stage strategy for upcycling chlorine-contaminated plastic waste," Nature Sustainability, Nature, vol. 6(10), pages 1258-1267, October.
    20. Park, Ki-Bum & Oh, Seung-Jin & Begum, Guzelciftci & Kim, Joo-Sik, 2018. "Production of clean oil with low levels of chlorine and olefins in a continuous two-stage pyrolysis of a mixture of waste low-density polyethylene and polyvinyl chloride," Energy, Elsevier, vol. 157(C), pages 402-411.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6058-:d:893828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.