IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5920-d888899.html
   My bibliography  Save this article

Comprehensive CFD Aerodynamic Simulation of a Sport Motorcycle

Author

Listed:
  • Krzysztof Wiński

    (The Institute of Automatic Control and Robotics, Warsaw University of Technology, 02-525 Warsaw, Poland)

  • Adam Piechna

    (The Institute of Automatic Control and Robotics, Warsaw University of Technology, 02-525 Warsaw, Poland)

Abstract

Nowadays, aerodynamics is a key focal point in the vehicle design process. Beyond its direct impact on the performance of a vehicle, it also has significant effects on economics and safety. In the last decade numerical methods, mainly Computational Fluid Dynamics (CFD), have established themselves as a reliable tool that assists in the design process and complements classical tunnel tests. However, questions remain about the possible obtained accuracy, best practices and applied turbulence models. In this paper, we present a comprehensive study of motorcycle aerodynamics using CFD methods which, compared to the most common car aerodynamics analysis, has many specific features. The motorcycle, along with its rider, constitutes a shape with very complex aerodynamic properties. A detailed insight into the flow features is presented with detailed commentary. The front fairing, the front wheel and its suspension were identified as the main contributors to the aerodynamic drag of the motorcycle and its rider. The influence of rider position was also studied and identified as one of the most important elements when considering motorcycle aerodynamics. An extensive turbulence models study was performed to evaluate the accuracy of the most common Reynolds-averaged Navier–Stokes models and novel hybrid models, such as the Scale Adaptive Simulation and the Delayed Detached Eddy Simulation. Similar values of drag coefficients were obtained for different turbulence models with noticeable differences found for k − ϵ models. It was also observed that near-wall treatment affects the flow behaviour near the wheels and windshield but has no impact on the global aerodynamic parameters. In the summary, a discussion about the obtained results was set forth and a number of questions related to specifics of motorcycle CFD simulations were addressed.

Suggested Citation

  • Krzysztof Wiński & Adam Piechna, 2022. "Comprehensive CFD Aerodynamic Simulation of a Sport Motorcycle," Energies, MDPI, vol. 15(16), pages 1-27, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5920-:d:888899
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5920/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5920/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maciej Szudarek & Adam Piechna & Janusz Piechna, 2022. "Feasibility Study of a Fan-Driven Device Generating Downforce for Road Cars," Energies, MDPI, vol. 15(15), pages 1-27, July.
    2. Alex Guerrero & Robert Castilla, 2020. "Aerodynamic Study of the Wake Effects on a Formula 1 Car," Energies, MDPI, vol. 13(19), pages 1-25, October.
    3. Takuji Nakashima & Hidemi Mutsuda & Taiga Kanehira & Makoto Tsubokura, 2020. "Fluid-Dynamic Force Measurement of Ahmed Model in Steady-State Cornering," Energies, MDPI, vol. 13(24), pages 1-20, December.
    4. Maciej Szudarek & Konrad Kamieniecki & Sylwester Tudruj & Janusz Piechna, 2022. "Towards Balanced Aerodynamic Axle Loading of a Car with Covered Wheels—Inflatable Splitter," Energies, MDPI, vol. 15(15), pages 1-28, July.
    5. Jakub Broniszewski & Janusz Ryszard Piechna, 2022. "Fluid-Structure Interaction Analysis of a Competitive Car during Brake-in-Turn Manoeuvre," Energies, MDPI, vol. 15(8), pages 1-16, April.
    6. Maciej Szudarek & Janusz Piechna, 2021. "CFD Analysis of the Influence of the Front Wing Setup on a Time Attack Sports Car’s Aerodynamics," Energies, MDPI, vol. 14(23), pages 1-29, November.
    7. Janusz Ryszard Piechna & Krzysztof Kurec & Jakub Broniszewski & Michał Remer & Adam Piechna & Konrad Kamieniecki & Przemysław Bibik, 2022. "Influence of the Car Movable Aerodynamic Elements on Fast Road Car Cornering," Energies, MDPI, vol. 15(3), pages 1-28, January.
    8. Janusz Piechna, 2021. "A Review of Active Aerodynamic Systems for Road Vehicles," Energies, MDPI, vol. 14(23), pages 1-31, November.
    9. Krzysztof Kurec & Konrad Kamieniecki & Janusz Piechna, 2022. "Influence of Different Plates Arrangements on the Car Body," Energies, MDPI, vol. 15(2), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borja González-Arcos & Pedro Javier Gamez-Montero, 2023. "Aerodynamic Study of MotoGP Motorcycle Flow Redirectors," Energies, MDPI, vol. 16(12), pages 1-32, June.
    2. Maciej Szudarek & Adam Piechna & Piotr Prusiński & Leszek Rudniak, 2022. "CFD Study of High-Speed Train in Crosswinds for Large Yaw Angles with RANS-Based Turbulence Models including GEKO Tuning Approach," Energies, MDPI, vol. 15(18), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Kurec, 2022. "Numerical Study of the Sports Car Aerodynamic Enhancements," Energies, MDPI, vol. 15(18), pages 1-19, September.
    2. Maciej Szudarek & Adam Piechna & Piotr Prusiński & Leszek Rudniak, 2022. "CFD Study of High-Speed Train in Crosswinds for Large Yaw Angles with RANS-Based Turbulence Models including GEKO Tuning Approach," Energies, MDPI, vol. 15(18), pages 1-24, September.
    3. Maciej Szudarek & Adam Piechna & Janusz Piechna, 2022. "Feasibility Study of a Fan-Driven Device Generating Downforce for Road Cars," Energies, MDPI, vol. 15(15), pages 1-27, July.
    4. Maciej Szudarek & Konrad Kamieniecki & Sylwester Tudruj & Janusz Piechna, 2022. "Towards Balanced Aerodynamic Axle Loading of a Car with Covered Wheels—Inflatable Splitter," Energies, MDPI, vol. 15(15), pages 1-28, July.
    5. Władysław Marek Hamiga & Wojciech Bronisław Ciesielka, 2022. "Numerical Analysis of Aeroacoustic Phenomena Generated by Heterogeneous Column of Vehicles," Energies, MDPI, vol. 15(13), pages 1-37, June.
    6. Krzysztof Kurec & Konrad Kamieniecki & Janusz Piechna, 2022. "Influence of Different Plates Arrangements on the Car Body," Energies, MDPI, vol. 15(2), pages 1-17, January.
    7. Borja González-Arcos & Pedro Javier Gamez-Montero, 2023. "Aerodynamic Study of MotoGP Motorcycle Flow Redirectors," Energies, MDPI, vol. 16(12), pages 1-32, June.
    8. Petar Georgiev & Giovanni De Filippis & Patrick Gruber & Aldo Sorniotti, 2023. "On the Benefits of Active Aerodynamics on Energy Recuperation in Hybrid and Fully Electric Vehicles," Energies, MDPI, vol. 16(15), pages 1-27, August.
    9. Janusz Ryszard Piechna & Krzysztof Kurec & Jakub Broniszewski & Michał Remer & Adam Piechna & Konrad Kamieniecki & Przemysław Bibik, 2022. "Influence of the Car Movable Aerodynamic Elements on Fast Road Car Cornering," Energies, MDPI, vol. 15(3), pages 1-28, January.
    10. Jakub Broniszewski & Janusz Ryszard Piechna, 2022. "Fluid-Structure Interaction Analysis of a Competitive Car during Brake-in-Turn Manoeuvre," Energies, MDPI, vol. 15(8), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5920-:d:888899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.