IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5677-d880588.html
   My bibliography  Save this article

Prediction Model for the Internal Temperature of a Greenhouse with a Water-to-Water Heat Pump Using a Pellet Boiler as a Heat Source Using Building Energy Simulation

Author

Listed:
  • Chung-Geon Lee

    (Agriculture and Life Sciences Research Institute, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 24341, Korea)

  • La-Hoon Cho

    (Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 24341, Korea)

  • Seok-Jun Kim

    (Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 24341, Korea)

  • Sun-Yong Park

    (Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 24341, Korea)

  • Dae-Hyun Kim

    (Department of Biosystems Engineering, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon-si 24341, Korea)

Abstract

Although smart farms are considered an alternative to traditional agriculture, they require large amounts of energy and high investment costs, hindering their efficient implementation. In the Republic of Korea, the energy supply is primarily for heating rather than cooling, necessitating the accurate prediction of the greenhouse internal temperature to determine the feasibility of agricultural management while using renewable energy. This study developed a model (TRNSYS) for predicting the internal temperature of a greenhouse using building energy simulation. A greenhouse heating experiment was conducted using a hybrid heating system simulated by TRNSYS to analyze the prediction model. The regression analysis of the experimental and simulation results revealed an R 2 and RMSE of 0.8834 and 3.61, respectively. A comparative analysis was conducted with the existing hot air heating system to evaluate the heating performance and economic feasibility of the hybrid system. Overall, the heating performance exhibited satisfactory results, whereas the economic analysis, based on life cycle cost, revealed a cost reduction effect of 9.45%. Hence, greenhouse heating using renewable energy can replace conventional fossil fuels with economic advantages. Moreover, the prediction of the internal temperature of the greenhouse will facilitate the design of a systematic smart farm business to prevent duplicate investment.

Suggested Citation

  • Chung-Geon Lee & La-Hoon Cho & Seok-Jun Kim & Sun-Yong Park & Dae-Hyun Kim, 2022. "Prediction Model for the Internal Temperature of a Greenhouse with a Water-to-Water Heat Pump Using a Pellet Boiler as a Heat Source Using Building Energy Simulation," Energies, MDPI, vol. 15(15), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5677-:d:880588
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5677/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5677/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chung-Geon Lee & La-Hoon Cho & Seok-Jun Kim & Sun-Yong Park & Dae-Hyun Kim, 2021. "Comparative Analysis of Combined Heating Systems Involving the Use of Renewable Energy for Greenhouse Heating," Energies, MDPI, vol. 14(20), pages 1-22, October.
    2. Sithole, H. & Cockerill, T.T. & Hughes, K.J. & Ingham, D.B. & Ma, L. & Porter, R.T.J. & Pourkashanian, M., 2016. "Developing an optimal electricity generation mix for the UK 2050 future," Energy, Elsevier, vol. 100(C), pages 363-373.
    3. Potrč, Sanja & Čuček, Lidija & Martin, Mariano & Kravanja, Zdravko, 2021. "Sustainable renewable energy supply networks optimization – The gradual transition to a renewable energy system within the European Union by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung-Geon Lee & La-Hoon Cho & Seok-Jun Kim & Sun-Yong Park & Dae-Hyun Kim, 2021. "Comparative Analysis of Combined Heating Systems Involving the Use of Renewable Energy for Greenhouse Heating," Energies, MDPI, vol. 14(20), pages 1-22, October.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Muhammad Amir Raza & Muhammad Mohsin Aman & Altaf Hussain Rajpar & Mohamed Bashir Ali Bashir & Touqeer Ahmed Jumani, 2022. "Towards Achieving 100% Renewable Energy Supply for Sustainable Climate Change in Pakistan," Sustainability, MDPI, vol. 14(24), pages 1-23, December.
    4. Koltsaklis, Nikolaos E. & Nazos, Konstantinos, 2017. "A stochastic MILP energy planning model incorporating power market dynamics," Applied Energy, Elsevier, vol. 205(C), pages 1364-1383.
    5. Hobley, Alexander, 2019. "Will gas be gone in the United Kingdom (UK) by 2050? An impact assessment of urban heat decarbonisation and low emission vehicle uptake on future UK energy system scenarios," Renewable Energy, Elsevier, vol. 142(C), pages 695-705.
    6. Yuanyuan He & Luxin Wan & Manli Zhang & Huijuan Zhao, 2022. "Regional Renewable Energy Installation Optimization Strategies with Renewable Portfolio Standards in China," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    7. Nikolaos Apostolopoulos & Alexandros Kakouris & Panagiotis Liargovas & Petar Borisov & Teodor Radev & Sotiris Apostolopoulos & Sofia Daskou & Eleni Ε. Anastasopoulou, 2023. "Just Transition Policies, Power Plant Workers and Green Entrepreneurs in Greece, Cyprus and Bulgaria: Can Education and Retraining Meet the Challenge?," Sustainability, MDPI, vol. 15(23), pages 1-21, November.
    8. Raza, Muhammad Amir & Khatri, Krishan Lal & Hussain, Arslan, 2022. "Transition from fossilized to defossilized energy system in Pakistan," Renewable Energy, Elsevier, vol. 190(C), pages 19-29.
    9. Jean-Nicolas Louis & Stéphane Allard & Freideriki Kotrotsou & Vincent Debusschere, 2020. "A multi-objective approach to the prospective development of the European power system by 2050," Post-Print hal-02376337, HAL.
    10. Anca Vasilica Tănasie & Luiza Loredana Năstase & Luminița Lucia Vochița & Andra Maria Manda & Geanina Iulia Boțoteanu & Cătălina Soriana Sitnikov, 2022. "Green Economy—Green Jobs in the Context of Sustainable Development," Sustainability, MDPI, vol. 14(8), pages 1-23, April.
    11. Ewelina Olba-Zięty & Jakub Jan Zięty & Mariusz Jerzy Stolarski, 2023. "External Environmental Costs of Solid Biomass Production against the Legal and Political Background in Europe," Energies, MDPI, vol. 16(10), pages 1-27, May.
    12. Kamila Słupińska & Marek Wieruszewski & Piotr Szczypa & Anna Kożuch & Krzysztof Adamowicz, 2022. "Public Perception of the Use of Woody Biomass for Energy Purposes in the Evaluation of Content and Information Management on the Internet," Energies, MDPI, vol. 15(19), pages 1-11, September.
    13. Shirley Thompson, 2023. "Strategic Analysis of the Renewable Electricity Transition: Power to the World without Carbon Emissions?," Energies, MDPI, vol. 16(17), pages 1-34, August.
    14. Mahbub, Md Shahriar & Viesi, Diego & Cattani, Sara & Crema, Luigi, 2017. "An innovative multi-objective optimization approach for long-term energy planning," Applied Energy, Elsevier, vol. 208(C), pages 1487-1504.
    15. Oriza Candra & Abdeljelil Chammam & José Ricardo Nuñez Alvarez & Iskandar Muda & Hikmet Ş. Aybar, 2023. "The Impact of Renewable Energy Sources on the Sustainable Development of the Economy and Greenhouse Gas Emissions," Sustainability, MDPI, vol. 15(3), pages 1-11, January.
    16. Hamed Jafari Kaleybar & Hossein Hafezi & Morris Brenna & Roberto Sebastiano Faranda, 2024. "Smart AC-DC Coupled Hybrid Railway Microgrids Integrated with Renewable Energy Sources: Current and Next Generation Architectures," Energies, MDPI, vol. 17(5), pages 1-27, March.
    17. Armenia Androniceanu & Oana Matilda Sabie, 2022. "Overview of Green Energy as a Real Strategic Option for Sustainable Development," Energies, MDPI, vol. 15(22), pages 1-35, November.
    18. Scott, Ian J. & Carvalho, Pedro M.S. & Botterud, Audun & Silva, Carlos A., 2021. "Long-term uncertainties in generation expansion planning: Implications for electricity market modelling and policy," Energy, Elsevier, vol. 227(C).
    19. Willsteed, Edward A. & Jude, Simon & Gill, Andrew B. & Birchenough, Silvana N.R., 2018. "Obligations and aspirations: A critical evaluation of offshore wind farm cumulative impact assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2332-2345.
    20. Yoon, Ha-Jun & Seo, Seung-Kwon & Lee, Chul-Jin, 2022. "Multi-period optimization of hydrogen supply chain utilizing natural gas pipelines and byproduct hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5677-:d:880588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.