Analysis of the Operation Characteristics of a Hybrid Heat Pump in an Existing Multifamily House Based on Field Test Data and Simulation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Erica Roccatello & Alessandro Prada & Paolo Baggio & Marco Baratieri, 2022. "Analysis of the Influence of Control Strategy and Heating Loads on the Performance of Hybrid Heat Pump Systems for Residential Buildings," Energies, MDPI, vol. 15(3), pages 1-19, January.
- Klein, Konstantin & Herkel, Sebastian & Henning, Hans-Martin & Felsmann, Clemens, 2017. "Load shifting using the heating and cooling system of an office building: Quantitative potential evaluation for different flexibility and storage options," Applied Energy, Elsevier, vol. 203(C), pages 917-937.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tamás Buday & Erika Buday-Bódi, 2023. "Reduction in CO 2 Emissions with Bivalent Heat Pump Systems," Energies, MDPI, vol. 16(7), pages 1-18, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
- Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).
- Ma, Huan & Sun, Qinghan & Chen, Qun & Zhao, Tian & He, Kelun, 2023. "Exergy-based flexibility cost indicator and spatio-temporal coordination principle of distributed multi-energy systems," Energy, Elsevier, vol. 267(C).
- Liu, Hong & Zhao, Yue & Gu, Chenghong & Ge, Shaoyun & Yang, Zan, 2021. "Adjustable capability of the distributed energy system: Definition, framework, and evaluation model," Energy, Elsevier, vol. 222(C).
- Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
- Omar Montero & Pauline Brischoux & Simon Callegari & Carolina Fraga & Matthias Rüetschi & Edouard Vionnet & Nicole Calame & Fabrice Rognon & Martin Patel & Pierre Hollmuller, 2022. "Large Air-to-Water Heat Pumps for Fuel-Boiler Substitution in Non-Retrofitted Multi-Family Buildings—Energy Performance, CO 2 Savings, and Lessons Learned in Actual Conditions of Use," Energies, MDPI, vol. 15(14), pages 1-29, July.
- Awan, Muhammad Bilal & Sun, Yongjun & Lin, Wenye & Ma, Zhenjun, 2023. "A framework to formulate and aggregate performance indicators to quantify building energy flexibility," Applied Energy, Elsevier, vol. 349(C).
- Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Tang, Hong & Wang, Shengwei, 2022. "Multi-level optimal dispatch strategy and profit-sharing mechanism for unlocking energy flexibilities of non-residential building clusters in electricity markets of multiple flexibility services," Renewable Energy, Elsevier, vol. 201(P1), pages 35-45.
- Simona-Vasilica Oprea & Adela Bâra & Răzvan Cristian Marales & Margareta-Stela Florescu, 2021. "Data Model for Residential and Commercial Buildings. Load Flexibility Assessment in Smart Cities," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
- Li, Sihui & Peng, Jinqing & Zou, Bin & Li, Bojia & Lu, Chujie & Cao, Jingyu & Luo, Yimo & Ma, Tao, 2021. "Zero energy potential of photovoltaic direct-driven air conditioners with considering the load flexibility of air conditioners," Applied Energy, Elsevier, vol. 304(C).
- O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
- David Vérez & Emiliano Borri & Alicia Crespo & Gabriel Zsembinszki & Belal Dawoud & Luisa F. Cabeza, 2021. "Experimental Study of a Small-Size Vacuum Insulated Water Tank for Building Applications," Sustainability, MDPI, vol. 13(10), pages 1-11, May.
- Ma, Zheng & Knotzer, Armin & Billanes, Joy Dalmacio & Jørgensen, Bo Nørregaard, 2020. "A literature review of energy flexibility in district heating with a survey of the stakeholders’ participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
- Monika Hall & Achim Geissler, 2020. "Load Control by Demand Side Management to Support Grid Stability in Building Clusters," Energies, MDPI, vol. 13(19), pages 1-15, October.
- Heidenthaler, Daniel & Leeb, Markus & Schnabel, Thomas & Huber, Hermann, 2021. "Comparative analysis of thermally activated building systems in wooden and concrete structures regarding functionality and energy storage on a simulation-based approach," Energy, Elsevier, vol. 233(C).
- Daniela Cirone & Roberto Bruno & Piero Bevilacqua & Stefania Perrella & Natale Arcuri, 2022. "Techno-Economic Analysis of an Energy Community Based on PV and Electric Storage Systems in a Small Mountain Locality of South Italy: A Case Study," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
- Zhou, Xinlei & Du, Han & Xue, Shan & Ma, Zhenjun, 2024. "Recent advances in data mining and machine learning for enhanced building energy management," Energy, Elsevier, vol. 307(C).
- Andolfi, Laura & Lima Baima, Renan & Burcheri, Lorenzo Matthias & Pavić, Ivan & Fridgen, Gilbert, 2025. "Sociotechnical design of building energy management systems in the public sector: Five design principles," Applied Energy, Elsevier, vol. 377(PD).
More about this item
Keywords
hybrid heat pump; bivalent heat pump; field test; building simulation; decarbonization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5611-:d:878756. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.