IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5610-d878488.html
   My bibliography  Save this article

Exploring the Influence of the Parameters’ Relationship between Reliability and Maintainability for Offshore Wind Farm Engineering

Author

Listed:
  • I-Hua Chung

    (Master’s Program in Offshore Wind Energy Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan)

Abstract

The two main research goals of this study are to develop a relationship diagram between the parameters of reliability and maintainability and to investigate the impact of reliability and maintenance on engineering design costs. In this study, we use the theory of reliability and maintainability parameters to derive the relationship between the parameters using block diagrams. Compared with onshore wind farms, offshore wind farms have higher reliability requirements, but the maintenance degree of offshore wind farms is lower due to environmental factors. This study proposes an important concept of reliability and maintenance for value engineering, which can help system design engineers and project engineers integrate reliability concerns in the design phase and operation and maintenance phase.

Suggested Citation

  • I-Hua Chung, 2022. "Exploring the Influence of the Parameters’ Relationship between Reliability and Maintainability for Offshore Wind Farm Engineering," Energies, MDPI, vol. 15(15), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5610-:d:878488
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5610/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5610/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yao Wang & Xinqin Gao & Yuanfeng Cai & Mingshun Yang & Shujuan Li & Yan Li, 2020. "Reliability Evaluation for Aviation Electric Power System in Consideration of Uncertainty," Energies, MDPI, vol. 13(5), pages 1-22, March.
    2. Asad Ullah Amin Shah & Robby Christian & Junyung Kim & Jaewhan Kim & Jinkyun Park & Hyun Gook Kang, 2021. "Dynamic Probabilistic Risk Assessment Based Response Surface Approach for FLEX and Accident Tolerant Fuels for Medium Break LOCA Spectrum," Energies, MDPI, vol. 14(9), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Klimczak & Jacek Paś & Stanisław Duer & Adam Rosiński & Patryk Wetoszka & Kamil Białek & Michał Mazur, 2022. "Selected Issues Associated with the Operational and Power Supply Reliability of Fire Alarm Systems," Energies, MDPI, vol. 15(22), pages 1-26, November.
    2. Stanisław Duer & Marek Woźniak & Jacek Paś & Konrad Zajkowski & Arkadiusz Ostrowski & Marek Stawowy & Zbigniew Budniak, 2023. "Reliability Testing of Wind Farm Devices Based on the Mean Time to Failures," Energies, MDPI, vol. 16(6), pages 1-13, March.
    3. Stanisław Duer & Marek Woźniak & Arkadiusz Ostrowski & Jacek Paś & Radosław Duer & Konrad Zajkowski & Dariusz Bernatowicz, 2022. "Assessment of the Reliability of Wind Farm Device on the Basis of Modeling Its Operation Process," Energies, MDPI, vol. 16(1), pages 1-16, December.
    4. Stanisław Duer & Marek Woźniak & Jacek Paś & Konrad Zajkowski & Dariusz Bernatowicz & Arkadiusz Ostrowski & Zbigniew Budniak, 2023. "Reliability Testing of Wind Farm Devices Based on the Mean Time between Failures (MTBF)," Energies, MDPI, vol. 16(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanisław Duer & Marek Woźniak & Jacek Paś & Konrad Zajkowski & Arkadiusz Ostrowski & Marek Stawowy & Zbigniew Budniak, 2023. "Reliability Testing of Wind Farm Devices Based on the Mean Time to Failures," Energies, MDPI, vol. 16(6), pages 1-13, March.
    2. Stanisław Duer & Marek Woźniak & Jacek Paś & Konrad Zajkowski & Dariusz Bernatowicz & Arkadiusz Ostrowski & Zbigniew Budniak, 2023. "Reliability Testing of Wind Farm Devices Based on the Mean Time between Failures (MTBF)," Energies, MDPI, vol. 16(4), pages 1-16, February.
    3. Jianhui Wu & Jingen Chen & Chunyan Zou & Xiaoxiao Li, 2022. "Accident Modeling and Analysis of Nuclear Reactors," Energies, MDPI, vol. 15(16), pages 1-3, August.
    4. Gyunyoung Heo, 2022. "Advancements in Probabilistic Safety Assessment of Nuclear Energy for Sustainability," Energies, MDPI, vol. 15(2), pages 1-2, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5610-:d:878488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.