IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5503-d875374.html
   My bibliography  Save this article

Opportunities and Limitations of Hydrogen Energy in Poland against the Background of the European Union Energy Policy

Author

Listed:
  • Jan L. Bednarczyk

    (Department of Economic Policy and Banking, Kazimierz Pułaski Faculty of Economics and Finance, University of Technology and Humanities in Radom, Chrobrego 31, 26-600 Radom, Poland)

  • Katarzyna Brzozowska-Rup

    (Department of Economics and Finance, Faculty of Management and Computer Modelling, Kielce University of Technology, Aleja Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland)

  • Sławomir Luściński

    (Department of Production Engineering, Faculty of Management and Computer Modelling, Kielce University of Technology, Aleja Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland)

Abstract

One of the strategic goals of developed countries is to significantly increase the share of renewable energy sources in electricity generation. However, the process may be hindered by, e.g., the storage and transport of energy from renewable sources. The European Union countries see the development of the hydrogen economy as an opportunity to overcome this barrier. Therefore, since 2020, the European Union has been implementing a hydrogen strategy that will increase the share of hydrogen in the European energy mix from the current 2 percent to up to 13–14 percent by 2050. In 2021, following the example of other European countries, the Polish government adopted the Polish Hydrogen Strategy until 2030 with an outlook until 2040 (PHS). However, the implementation of the strategy requires significant capital expenditure and infrastructure modernisation, which gives rise to question as to whether Poland is likely to achieve the goals set out in the Polish Hydrogen Strategy and European Green Deal. The subject of the research is an analysis of the sources of financing for the PHS against the background of solutions implemented by the EU countries and a SWOT/TOWS analysis on the hydrogen economy in Poland. The overall result of the SWOT/TOWS analysis shows the advantage of strengths and related opportunities. This allows for a positive assessment of the prospects for the hydrogen economy in Poland. Poland should continue its efforts to take advantage of the external factors (O/S), such as EU support, an increased price competitiveness of hydrogen, and the emergence of a competitive cross-border hydrogen market in Europe. At the same time, the Polish authorities should not forget about the weaknesses and threats that may inhibit the development of the domestic hydrogen market. It is necessary to modernise the infrastructure; increase the share of renewable energy sources in hydrogen production; increase R&D expenditure, and, in particular, to complete the negotiations related to the adoption of the Fit for 55 package.

Suggested Citation

  • Jan L. Bednarczyk & Katarzyna Brzozowska-Rup & Sławomir Luściński, 2022. "Opportunities and Limitations of Hydrogen Energy in Poland against the Background of the European Union Energy Policy," Energies, MDPI, vol. 15(15), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5503-:d:875374
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wojciech Drożdż & Filip Elżanowski & Jakub Dowejko & Bartosz Brożyński, 2021. "Hydrogen Technology on the Polish Electromobility Market. Legal, Economic, and Social Aspects," Energies, MDPI, vol. 14(9), pages 1-26, April.
    2. Radosław Kaplan & Michał Kopacz, 2020. "Economic Conditions for Developing Hydrogen Production Based on Coal Gasification with Carbon Capture and Storage in Poland," Energies, MDPI, vol. 13(19), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Krzymowski, 2022. "Energy Transformation and the UAE Green Economy: Trade Exchange and Relations with Three Seas Initiative Countries," Energies, MDPI, vol. 15(22), pages 1-20, November.
    2. Kinga Stecuła & Piotr Olczak & Paweł Kamiński & Dominika Matuszewska & Hai Duong Duc, 2022. "Towards Sustainable Transport: Techno-Economic Analysis of Investing in Hydrogen Buses in Public Transport in the Selected City of Poland," Energies, MDPI, vol. 15(24), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Jałowiec & Dariusz Grala & Piotr Maśloch & Henryk Wojtaszek & Grzegorz Maśloch & Agnieszka Wójcik-Czerniawska, 2022. "Analysis of the Implementation of Functional Hydrogen Assumptions in Poland and Germany," Energies, MDPI, vol. 15(22), pages 1-25, November.
    2. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Pål Østebø Andersen, 2023. "Editor’s Choice: Advances in Carbon Capture Subsurface Storage and Utilization," Energies, MDPI, vol. 16(5), pages 1-4, February.
    4. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Price promises, trust deficits and energy justice: Public perceptions of hydrogen homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Vladimir M. Matyushok & Anastasiia V. Sinelnikova & Sergey B. Matyushok & Diana Pamela Chavarry Galvez, 2024. "Carbon Capture and Storage in Hydrogen Production: World Experience and Growth of Export Opportunities of the Russian Hydrogen Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 507-516, January.
    6. Lorenzo Bolfo & Francesco Devia & Guglielmo Lomonaco, 2021. "Nuclear Hydrogen Production: Modeling and Preliminary Optimization of a Helical Tube Heat Exchanger," Energies, MDPI, vol. 14(11), pages 1-24, May.
    7. Alexander I. Balitskii & Vitaly V. Dmytryk & Lyubomir M. Ivaskevich & Olexiy A. Balitskii & Alyona V. Glushko & Lev B. Medovar & Karol F. Abramek & Ganna P. Stovpchenko & Jacek J. Eliasz & Marcin A. K, 2022. "Improvement of the Mechanical Characteristics, Hydrogen Crack Resistance and Durability of Turbine Rotor Steels Welded Joints," Energies, MDPI, vol. 15(16), pages 1-23, August.
    8. Qunxiang Gao & Ping Zhang & Wei Peng & Songzhe Chen & Gang Zhao, 2021. "Structural Design Simulation of Bayonet Heat Exchanger for Sulfuric Acid Decomposition," Energies, MDPI, vol. 14(2), pages 1-18, January.
    9. Stanisław Jaworski & Mariola Chrzanowska & Monika Zielińska-Sitkiewicz & Robert Pietrzykowski & Aleksandra Jezierska-Thöle & Piotr Zielonka, 2023. "Evaluating the Progress of Renewable Energy Sources in Poland: A Multidimensional Analysis," Energies, MDPI, vol. 16(18), pages 1-21, September.
    10. Mariusz Niekurzak, 2021. "The Potential of Using Renewable Energy Sources in Poland Taking into Account the Economic and Ecological Conditions," Energies, MDPI, vol. 14(22), pages 1-17, November.
    11. Dorota Brzezińska, 2021. "Hydrogen Dispersion and Ventilation Effects in Enclosures under Different Release Conditions," Energies, MDPI, vol. 14(13), pages 1-11, July.
    12. Shen, Yahao & Lv, Hong & Zheng, Tao & Liu, Yi & Zhou, Wei & Zhang, Cunman, 2023. "Temporal and spatial evolution of hydrogen leakage and diffusion from tube fittings on fuel cell vehicles under the effect of ambient wind," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5503-:d:875374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.