IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5477-d874383.html
   My bibliography  Save this article

Review on Floating Offshore Wind Turbine Models for Nonlinear Control Design

Author

Listed:
  • Hedi Basbas

    (FEMTO-ST Institute, Université Bourgogne Franche-Comté, UTBM, CNRS Rue Ernest Thierry Mieg, F-90000 Belfort, France)

  • Yong-Chao Liu

    (FEMTO-ST Institute, Université Bourgogne Franche-Comté, UTBM, CNRS Rue Ernest Thierry Mieg, F-90000 Belfort, France)

  • Salah Laghrouche

    (FEMTO-ST Institute, Université Bourgogne Franche-Comté, UTBM, CNRS Rue Ernest Thierry Mieg, F-90000 Belfort, France)

  • Mickaël Hilairet

    (FEMTO-ST Institute, Université Bourgogne Franche-Comté, UTBM, CNRS Rue Ernest Thierry Mieg, F-90000 Belfort, France)

  • Franck Plestan

    (Ecole Centrale Nantes, CNRS, LS2N, UMR 6004, Nantes Université, F-44000 Nantes, France)

Abstract

This article proposes a review of the modeling approaches for floating offshore wind turbines (FOWTs) for nonlinear control design. The aerodynamic, hydrodynamic and mooring line dynamic modules for the FOWT have been reviewed to provide an overview of several modeling approaches with their respective features. Next, three control-oriented models from the literature are revisited by presenting their methodological approaches to modeling and identification. These three models cover the three most popular types of FOWTs. Then, the performances of these models are validated with the open fatigue, aerodynamics, structures, and turbulence (OpenFAST) code, and their performances are evaluated according to several criteria. Finally, one of the three models is used to illustrate a nonlinear second-order sliding mode control based on the twisting algorithm to optimize the performance of the FOWT in terms of energy extraction and reduction in the platform pitch oscillation.

Suggested Citation

  • Hedi Basbas & Yong-Chao Liu & Salah Laghrouche & Mickaël Hilairet & Franck Plestan, 2022. "Review on Floating Offshore Wind Turbine Models for Nonlinear Control Design," Energies, MDPI, vol. 15(15), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5477-:d:874383
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5477/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5477/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sebastian, T. & Lackner, M.A., 2012. "Development of a free vortex wake method code for offshore floating wind turbines," Renewable Energy, Elsevier, vol. 46(C), pages 269-275.
    2. Javier López-Queija & Eider Robles & Jose Ignacio Llorente & Imanol Touzon & Joseba López-Mendia, 2022. "A Simplified Modeling Approach of Floating Offshore Wind Turbines for Dynamic Simulations," Energies, MDPI, vol. 15(6), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ran Tao & Jingpeng Yue & Zhenlin Huang & Ranran An & Zou Li & Junfeng Liu, 2022. "A High-Gain DC Side Converter with a Ripple-Free Input Current for Offshore Wind Energy Systems," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    2. Bowen Zhou & Zhibo Zhang & Guangdi Li & Dongsheng Yang & Matilde Santos, 2023. "Review of Key Technologies for Offshore Floating Wind Power Generation," Energies, MDPI, vol. 16(2), pages 1-26, January.
    3. Ivana Racetin & Nives Ostojić Škomrlj & Marina Peko & Mladen Zrinjski, 2023. "Fuzzy Multi-Criteria Decision for Geoinformation System-Based Offshore Wind Farm Positioning in Croatia," Energies, MDPI, vol. 16(13), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
    2. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    3. Liu, Yuanchuan & Xiao, Qing & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng, 2017. "Establishing a fully coupled CFD analysis tool for floating offshore wind turbines," Renewable Energy, Elsevier, vol. 112(C), pages 280-301.
    4. Su, Keye & Bliss, Donald, 2019. "A novel hybrid free-wake model for wind turbine performance and wake evolution," Renewable Energy, Elsevier, vol. 131(C), pages 977-992.
    5. Martín-San-Román, Raquel & Benito-Cia, Pablo & Azcona-Armendáriz, José & Cuerva-Tejero, Alvaro, 2021. "Validation of a free vortex filament wake module for the integrated simulation of multi-rotor wind turbines," Renewable Energy, Elsevier, vol. 179(C), pages 1706-1718.
    6. Farrugia, R. & Sant, T. & Micallef, D., 2014. "Investigating the aerodynamic performance of a model offshore floating wind turbine," Renewable Energy, Elsevier, vol. 70(C), pages 24-30.
    7. Rizwan Haider & Xin Li & Wei Shi & Zaibin Lin & Qing Xiao & Haisheng Zhao, 2024. "Review of Computational Fluid Dynamics in the Design of Floating Offshore Wind Turbines," Energies, MDPI, vol. 17(17), pages 1-37, August.
    8. Yang Huang & Decheng Wan, 2019. "Investigation of Interference Effects Between Wind Turbine and Spar-Type Floating Platform Under Combined Wind-Wave Excitation," Sustainability, MDPI, vol. 12(1), pages 1-30, December.
    9. Wen, Hao & Sang, Song & Qiu, Chenhui & Du, Xiangrui & Zhu, Xiao & Shi, Qian, 2019. "A new optimization method of wind turbine airfoil performance based on Bessel equation and GABP artificial neural network," Energy, Elsevier, vol. 187(C).
    10. Yang, Lin & Liao, Kangping & Ma, Qingwei & Ma, Gang & Sun, Hanbing, 2023. "Investigation of wake characteristics of floating offshore wind turbine with control strategy using actuator curve embedding method," Renewable Energy, Elsevier, vol. 218(C).
    11. Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2019. "A numerical study on the angle of attack to the blade of a horizontal-axis offshore floating wind turbine under static and dynamic yawed conditions," Energy, Elsevier, vol. 168(C), pages 1138-1156.
    12. Salehyar, Sara & Zhu, Qiang, 2015. "Aerodynamic dissipation effects on the rotating blades of floating wind turbines," Renewable Energy, Elsevier, vol. 78(C), pages 119-127.
    13. Micallef, Daniel & Sant, Tonio, 2015. "Loading effects on floating offshore horizontal axis wind turbines in surge motion," Renewable Energy, Elsevier, vol. 83(C), pages 737-748.
    14. López-Queija, Javier & Sotomayor, Eneko & Jugo, Josu & Aristondo, Ander & Robles, Eider, 2024. "A novel python-based floating offshore wind turbine simulation framework," Renewable Energy, Elsevier, vol. 222(C).
    15. Hawari, Qusay & Kim, Taeseong & Ward, Christopher & Fleming, James, 2023. "LQG control for hydrodynamic compensation on large floating wind turbines," Renewable Energy, Elsevier, vol. 205(C), pages 1-9.
    16. Rodriguez, Steven N. & Jaworski, Justin W., 2020. "Strongly-coupled aeroelastic free-vortex wake framework for floating offshore wind turbine rotors. Part 2: Application," Renewable Energy, Elsevier, vol. 149(C), pages 1018-1031.
    17. Liu, Weiqi & Liu, Weixing & Zhang, Liang & Sheng, Qihu & Zhou, Binzhen, 2018. "A numerical model for wind turbine wakes based on the vortex filament method," Energy, Elsevier, vol. 157(C), pages 561-570.
    18. Moutaz Elgammi & Tonio Sant, 2016. "Combining Unsteady Blade Pressure Measurements and a Free-Wake Vortex Model to Investigate the Cycle-to-Cycle Variations in Wind Turbine Aerodynamic Blade Loads in Yaw," Energies, MDPI, vol. 9(6), pages 1-27, June.
    19. Wen, Binrong & Dong, Xingjian & Tian, Xinliang & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2018. "The power performance of an offshore floating wind turbine in platform pitching motion," Energy, Elsevier, vol. 154(C), pages 508-521.
    20. Kyle, Ryan & Lee, Yeaw Chu & Früh, Wolf-Gerrit, 2020. "Propeller and vortex ring state for floating offshore wind turbines during surge," Renewable Energy, Elsevier, vol. 155(C), pages 645-657.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5477-:d:874383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.