IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5282-d868032.html
   My bibliography  Save this article

Socio-Environmental Evaluation of MV Commercial Time-Shift Application Based on Battery Energy Storage Systems

Author

Listed:
  • Alba Leduchowicz-Municio

    (Mechanical Engineering Department, Universitat Politècnica de Catalunya—BarcelonaTech, 08028 Barcelona, Spain
    Energy Group of the Department of Energy and Electrical Automation Engineering of the Polytechnic School, University of São Paulo, São Paulo 05508-010, Brazil)

  • Miguel Edgar Morales Udaeta

    (Energy Group of the Department of Energy and Electrical Automation Engineering of the Polytechnic School, University of São Paulo, São Paulo 05508-010, Brazil)

  • André Luiz Veiga Gimenes

    (Energy Group of the Department of Energy and Electrical Automation Engineering of the Polytechnic School, University of São Paulo, São Paulo 05508-010, Brazil)

  • Tuo Ji

    (CPFL Energia, Campinas 13088-900, Brazil)

  • Victor Baiochi Riboldi

    (CPFL Energia, Campinas 13088-900, Brazil)

Abstract

The urgent need to curb climate change calls for an energy transition to cleaner, more resilient and sustainable solutions. Combined designs of energy storage systems and demand management strategies are becoming more frequent in the literature. However, are these solutions really sustainable from a multi-dimensional approach and in real-world applications? To answer this question, this work performs a local and scaled-up field-based evaluation of the social and environmental impacts of a pilot project in Brazil, which consists of replacing diesel generators with a Battery Energy Storage System (BESS) in a peak power plant of a Medium Voltage (MV) commercial load. For this, the combined RCPA-LCI method is applied, which allows characterizing both energy alternatives jointly considering the Life Cycle Inventory (LCI) and the multi-dimensional evaluation perspective of the Resource Complete Potential Assessment (RCPA). Then, the scalability of this commercial solution at the national level is analyzed through two main lenses: GHG emissions reduction and job generation. The benefits are estimated at a potential 15.4 million tons of CO 2 avoided and 113 new job opportunities per year. The results demonstrate the positive socio-environmental performance of BESS-based peak plants for MV commercial applications in Brazil.

Suggested Citation

  • Alba Leduchowicz-Municio & Miguel Edgar Morales Udaeta & André Luiz Veiga Gimenes & Tuo Ji & Victor Baiochi Riboldi, 2022. "Socio-Environmental Evaluation of MV Commercial Time-Shift Application Based on Battery Energy Storage Systems," Energies, MDPI, vol. 15(14), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5282-:d:868032
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5282/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5282/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fulin Fan & Giorgio Zorzi & David Campos-Gaona & Graeme Burt & Olimpo Anaya-Lara & John Nwobu & Ander Madariaga, 2021. "Sizing and Coordination Strategies of Battery Energy Storage System Co-Located with Wind Farm: The UK Perspective," Energies, MDPI, vol. 14(5), pages 1-21, March.
    2. Yushen Miao & Tianyi Chen & Shengrong Bu & Hao Liang & Zhu Han, 2021. "Co-Optimizing Battery Storage for Energy Arbitrage and Frequency Regulation in Real-Time Markets Using Deep Reinforcement Learning," Energies, MDPI, vol. 14(24), pages 1-17, December.
    3. Khishtandar, Soheila & Zandieh, Mostafa & Dorri, Behrouz, 2017. "A multi criteria decision making framework for sustainability assessment of bioenergy production technologies with hesitant fuzzy linguistic term sets: The case of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1130-1145.
    4. Yilan, Gülşah & Kadirgan, M.A. Neşet & Çiftçioğlu, Gökçen A., 2020. "Analysis of electricity generation options for sustainable energy decision making: The case of Turkey," Renewable Energy, Elsevier, vol. 146(C), pages 519-529.
    5. Hee-Jun Cha & Sung-Eun Lee & Dongjun Won, 2019. "Implementation of Optimal Scheduling Algorithm for Multi-Functional Battery Energy Storage System," Energies, MDPI, vol. 12(7), pages 1-17, April.
    6. Di Somma, M. & Yan, B. & Bianco, N. & Graditi, G. & Luh, P.B. & Mongibello, L. & Naso, V., 2017. "Multi-objective design optimization of distributed energy systems through cost and exergy assessments," Applied Energy, Elsevier, vol. 204(C), pages 1299-1316.
    7. Diaz-Balteiro, L & González-Pachón, J. & Romero, C., 2017. "Measuring systems sustainability with multi-criteria methods: A critical review," European Journal of Operational Research, Elsevier, vol. 258(2), pages 607-616.
    8. Ioannis Mexis & Grazia Todeschini, 2020. "Battery Energy Storage Systems in the United Kingdom: A Review of Current State-of-the-Art and Future Applications," Energies, MDPI, vol. 13(14), pages 1-31, July.
    9. Pavani Ponnaganti & Birgitte Bak-Jensen & Brian Vejrum Wæhrens & Jesper Asmussen, 2021. "Assessment of Energy Arbitrage Using Energy Storage Systems: A Wind Park’s Perspective," Energies, MDPI, vol. 14(16), pages 1-20, August.
    10. Thornley, Patricia & Rogers, John & Huang, Ye, 2008. "Quantification of employment from biomass power plants," Renewable Energy, Elsevier, vol. 33(8), pages 1922-1927.
    11. Cayir Ervural, Beyzanur & Evren, Ramazan & Delen, Dursun, 2018. "A multi-objective decision-making approach for sustainable energy investment planning," Renewable Energy, Elsevier, vol. 126(C), pages 387-402.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selçuklu, Saltuk Buğra & Coit, D.W. & Felder, F.A., 2023. "Electricity generation portfolio planning and policy implications of Turkish power system considering cost, emission, and uncertainty," Energy Policy, Elsevier, vol. 173(C).
    2. Du, Yimeng & Takeuchi, Kenji, 2019. "Can climate mitigation help the poor? Measuring impacts of the CDM in rural China," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 178-197.
    3. Mónica de Castro-Pardo & Fernando Pérez-Rodríguez & José María Martín-Martín & João C. Azevedo, 2019. "Planning for Democracy in Protected Rural Areas: Application of a Voting Method in a Spanish-Portuguese Reserve," Land, MDPI, vol. 8(10), pages 1-17, October.
    4. Tan, R.R. & Aviso, K.B. & Ng, D.K.S., 2019. "Optimization models for financing innovations in green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Da Li & Shijie Zhang & Yunhan Xiao, 2020. "Interval Optimization-Based Optimal Design of Distributed Energy Resource Systems under Uncertainties," Energies, MDPI, vol. 13(13), pages 1-18, July.
    6. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Sustainability analysis for the design of distributed energy systems: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 290(C).
    7. Clarke, Fiona & Dorneanu, Bogdan & Mechleri, Evgenia & Arellano-Garcia, Harvey, 2021. "Optimal design of heating and cooling pipeline networks for residential distributed energy resource systems," Energy, Elsevier, vol. 235(C).
    8. Mónica de Castro-Pardo & Pascual Fernández Martínez & Amelia Pérez Zabaleta & João C. Azevedo, 2021. "Dealing with Water Conflicts: A Comprehensive Review of MCDM Approaches to Manage Freshwater Ecosystem Services," Land, MDPI, vol. 10(5), pages 1-32, April.
    9. Hugo O. Garcés & Claudia Durán & Eduardo Espinosa & Alejandro Jerez & Fredi Palominos & Marcela Hinojosa & Raúl Carrasco, 2022. "Monitoring of Thermal Comfort and Air Quality for Sustainable Energy Management inside Hospitals Based on Online Analytical Processing and the Internet of Things," IJERPH, MDPI, vol. 19(19), pages 1-23, September.
    10. repec:eco:journ2:2017-04-06 is not listed on IDEAS
    11. Hu, Nan & Zheng, Bing, 2023. "Natural resources, education, and green economic development," Resources Policy, Elsevier, vol. 86(PB).
    12. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    13. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    14. Ezbakhe, Fatine & Pérez-Foguet, Agustí, 2021. "Decision analysis for sustainable development: The case of renewable energy planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 291(2), pages 601-613.
    15. Ewa Roszkowska & Bartłomiej Jefmański, 2021. "Interval-Valued Intuitionistic Fuzzy Synthetic Measure (I-VIFSM) Based on Hellwig’s Approach in the Analysis of Survey Data," Mathematics, MDPI, vol. 9(3), pages 1-17, January.
    16. Assadi, Mohammad Reza & Ataebi, Melikasadat & Ataebi, Elmira sadat & Hasani, Aliakbar, 2022. "Prioritization of renewable energy resources based on sustainable management approach using simultaneous evaluation of criteria and alternatives: A case study on Iran's electricity industry," Renewable Energy, Elsevier, vol. 181(C), pages 820-832.
    17. Yuan, Jiahang & Luo, Xinggang & Ding, Xianghai & Liu, Chunlai & Li, Cunbin, 2019. "Biomass power generation fuel procurement and storage modes evaluation: A case study in Jilin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 75-86.
    18. Calliope Panoutsou & David Chiaramonti, 2020. "Socio-Economic Opportunities from Miscanthus Cultivation in Marginal Land for Bioenergy," Energies, MDPI, vol. 13(11), pages 1-22, May.
    19. Arvanitopoulos, T. & Agnolucci, P., 2020. "The long-term effect of renewable electricity on employment in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Seyit Ali Erdogan & Jonas Šaparauskas & Zenonas Turskis, 2019. "A Multi-Criteria Decision-Making Model to Choose the Best Option for Sustainable Construction Management," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    21. Dianfa Wu & Zhiping Yang & Ningling Wang & Chengzhou Li & Yongping Yang, 2018. "An Integrated Multi-Criteria Decision Making Model and AHP Weighting Uncertainty Analysis for Sustainability Assessment of Coal-Fired Power Units," Sustainability, MDPI, vol. 10(6), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5282-:d:868032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.