IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5055-d860222.html
   My bibliography  Save this article

Experimental Investigation of Thermal Bridges and Heat Transfer through Window Frame Elements at Achieving Energy Saving

Author

Listed:
  • Anastasios Moumtzakis

    (Department of Environmental Engineering, Democritus University of Thrace, 67100 Xanthi, Greece)

  • Stamatis Zoras

    (Department of Environmental Engineering, Democritus University of Thrace, 67100 Xanthi, Greece)

  • Vasilis Evagelopoulos

    (Department of Chemical Engineering, University of West Macedonia, 50100 Kozani, Greece)

  • Argyro Dimoudi

    (Department of Environmental Engineering, Democritus University of Thrace, 67100 Xanthi, Greece)

Abstract

Windows are responsible for significant amounts of energy loss through typical building envelopes. There have been multiple studies on heat loss through the glazing unit and frame system. This study presents an experimental investigation of a window unit and focuses specifically on the conductance between the structural elements and the frame system of a conventional house in the city of Xanthi, northern Greece. It is obvious that even a perfect window system cannot reduce heat transfer between the base of the frame and the upper surface of the floor. The experimental and simulation procedure of this project includes the installation of an insulating layer in front of the window unit for a variety of frames (solid wood, aluminum, PVC, etc.) at different distances. The main objective of this paper is to determine how effective an insulating barrier can be in respect to different types of frame, glazing, and weather conditions for the control of heat loss. Through the application of this technique, in combination with an appropriate insulating frame and window unit, designers can control the temperature inside the room at close proximity to the windows, in order to contribute to energy saving, aiming towards a building with zero energy demand.

Suggested Citation

  • Anastasios Moumtzakis & Stamatis Zoras & Vasilis Evagelopoulos & Argyro Dimoudi, 2022. "Experimental Investigation of Thermal Bridges and Heat Transfer through Window Frame Elements at Achieving Energy Saving," Energies, MDPI, vol. 15(14), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5055-:d:860222
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5055/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5055/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dascalaki, E.G. & Balaras, C.A. & Gaglia, A.G. & Droutsa, K.G. & Kontoyiannidis, S., 2012. "Energy performance of buildings—EPBD in Greece," Energy Policy, Elsevier, vol. 45(C), pages 469-477.
    2. Baldinelli, G. & Bianchi, F., 2014. "Windows thermal resistance: Infrared thermography aided comparative analysis among finite volumes simulations and experimental methods," Applied Energy, Elsevier, vol. 136(C), pages 250-258.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Varun Kumar & K. Chandan & K. V. Nagaraja & M. V. Reddy, 2022. "Heat Conduction with Krylov Subspace Method Using FEniCSx," Energies, MDPI, vol. 15(21), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Constantinos A. Balaras & Andreas I. Theodoropoulos & Elena G. Dascalaki, 2023. "Geographic Information Systems for Facilitating Audits of the Urban Built Environment," Energies, MDPI, vol. 16(11), pages 1-26, May.
    2. Fokaides, Paris A. & Jurelionis, Andrius & Gagyte, Laura & Kalogirou, Soteris A., 2016. "Mock target IR thermography for indoor air temperature measurement," Applied Energy, Elsevier, vol. 164(C), pages 676-685.
    3. Hyunjoo Lee & Misuk Lee & Sesil Lim, 2018. "Do Consumers Care about the Energy Efficiency of Buildings? Understanding Residential Choice Based on Energy Performance Certificates," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    4. Xie, Hailun & Eames, Matt & Mylona, Anastasia & Davies, Hywel & Challenor, Peter, 2024. "Creating granular climate zones for future-proof building design in the UK," Applied Energy, Elsevier, vol. 357(C).
    5. Axaopoulos, Ioannis & Axaopoulos, Petros & Gelegenis, John, 2014. "Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind," Applied Energy, Elsevier, vol. 117(C), pages 167-175.
    6. Sihyun Park & Seung-Yeong Song, 2019. "Evaluation of Alternatives for Improving the Thermal Resistance of Window Glazing Edges," Energies, MDPI, vol. 12(2), pages 1-18, January.
    7. Niki-Artemis Spyridaki & Anastasia Ioannou & Alexandros Flamos, 2016. "How Can the Context Affect Policy Decision-Making: The Case of Climate Change Mitigation Policies in the Greek Building Sector," Energies, MDPI, vol. 9(4), pages 1-22, April.
    8. Maria Psillaki & Nikolaos Apostolopoulos & Ilias Makris & Panagiotis Liargovas & Sotiris Apostolopoulos & Panos Dimitrakopoulos & George Sklias, 2023. "Hospitals’ Energy Efficiency in the Perspective of Saving Resources and Providing Quality Services through Technological Options: A Systematic Literature Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    9. Kalliopi G. Droutsa & Constantinos A. Balaras & Spyridon Lykoudis & Simon Kontoyiannidis & Elena G. Dascalaki & Athanassios A. Argiriou, 2020. "Baselines for Energy Use and Carbon Emission Intensities in Hellenic Nonresidential Buildings," Energies, MDPI, vol. 13(8), pages 1-29, April.
    10. Eleftheria Touloupaki & Theodoros Theodosiou, 2017. "Optimization of External Envelope Insulation Thickness: A Parametric Study," Energies, MDPI, vol. 10(3), pages 1-19, February.
    11. Dias Pereira, Luísa & Raimondo, Daniela & Corgnati, Stefano Paolo & Gameiro da Silva, Manuel, 2014. "Energy consumption in schools – A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 911-922.
    12. Bertoldi, Paolo & Mosconi, Rocco, 2020. "Do energy efficiency policies save energy? A new approach based on energy policy indicators (in the EU Member States)," Energy Policy, Elsevier, vol. 139(C).
    13. Franke, Melanie & Nadler, Claudia, 2019. "Energy efficiency in the German residential housing market: Its influence on tenants and owners," Energy Policy, Elsevier, vol. 128(C), pages 879-890.
    14. Luca Evangelisti & Claudia Guattari & Paola Gori & Roberto De Lieto Vollaro, 2015. "In Situ Thermal Transmittance Measurements for Investigating Differences between Wall Models and Actual Building Performance," Sustainability, MDPI, vol. 7(8), pages 1-11, August.
    15. Spyridaki, Niki-Artemis & Stavrakas, Vassilis & Dendramis, Yiannis & Flamos, Alexandros, 2020. "Understanding technology ownership to reveal adoption trends for energy efficiency measures in the Greek residential sector," Energy Policy, Elsevier, vol. 140(C).
    16. Martin, Miguel & Chong, Adrian & Biljecki, Filip & Miller, Clayton, 2022. "Infrared thermography in the built environment: A multi-scale review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    17. Malvoni, Maria & Baglivo, Cristina & Congedo, Paolo Maria & Laforgia, Domenico, 2016. "CFD modeling to evaluate the thermal performances of window frames in accordance with the ISO 10077," Energy, Elsevier, vol. 111(C), pages 430-438.
    18. Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2018. "A Review of Transparent Insulation Material (TIM) for building energy saving and daylight comfort," Applied Energy, Elsevier, vol. 226(C), pages 713-729.
    19. Hassan A. Sleiman & Steffen Hempel & Roberto Traversari & Sander Bruinenberg, 2017. "An Assisted Workflow for the Early Design of Nearly Zero Emission Healthcare Buildings," Energies, MDPI, vol. 10(7), pages 1-26, July.
    20. Fabio Bisegna & Benedetta Mattoni & Paola Gori & Francesco Asdrubali & Claudia Guattari & Luca Evangelisti & Sara Sambuco & Francesco Bianchi, 2016. "Influence of Insulating Materials on Green Building Rating System Results," Energies, MDPI, vol. 9(9), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5055-:d:860222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.