IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5003-d858620.html
   My bibliography  Save this article

Study of Grid-Connected PV System for a Low Voltage Distribution System: A Case Study of Cambodia

Author

Listed:
  • Vannak Vai

    (Department of Electrical and Energy Engineering, Energy Technology and Management Unit, Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh 12406, Cambodia)

  • Samphors Eng

    (Department of Electrical and Energy Engineering, Energy Technology and Management Unit, Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh 12406, Cambodia)

Abstract

The low voltage (LV) distribution systems are extended year by year due to the increase in energy demand. To overcome this issue, distribution system utilities have been focusing on designing and operating an appropriate distribution system with minimum capital and operational expenditure for supplying electricity to users. This article compares different algorithms to design an LVAC distribution system in a rural area, which focuses on minimizing the total length of lines and the power losses and balancing the loads among the three phases including the economic evaluation of the grid-connected PV system. Firstly, the shortest path (SP) algorithm is established to search for the minimization of the conductor used. Secondly, three different algorithms which are repeated phase sequence (RPABC), first fit bin packing (FFBP), and mixed-integer quadratic programming (MIQP) algorithms are developed to balance the load and minimize power losses. Next, a comparative result of three different algorithms is provided. Finally, the techno-economic analysis of the grid-connected PV system with different electricity tariffs with hybrid optimization of multiple energy resources (HOMER) software is studied in the planning period. To validate a proposed method, the 129-buses low voltage distribution in a rural village, in Cambodia, is tested. The simulation result confirms the optimal solution of the MIQP algorithm and PV system integration in designing a distribution system in a particular case study.

Suggested Citation

  • Vannak Vai & Samphors Eng, 2022. "Study of Grid-Connected PV System for a Low Voltage Distribution System: A Case Study of Cambodia," Energies, MDPI, vol. 15(14), pages 1-12, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5003-:d:858620
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5003/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5003/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zahid Javid & Ulas Karaagac & Ilhan Kocar & Ka Wing Chan, 2021. "Laplacian Matrix-Based Power Flow Formulation for LVDC Grids with Radial and Meshed Configurations," Energies, MDPI, vol. 14(7), pages 1-21, March.
    2. Tefera Mekonnen & Ramchandra Bhandari & Venkata Ramayya, 2021. "Modeling, Analysis and Optimization of Grid-Integrated and Islanded Solar PV Systems for the Ethiopian Residential Sector: Considering an Emerging Utility Tariff Plan for 2021 and Beyond," Energies, MDPI, vol. 14(11), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dara Eam & Vannak Vai & Chhith Chhlonh & Samphors Eng, 2023. "Planning of an LVAC Distribution System with Centralized PV and Decentralized PV Integration for a Rural Village," Energies, MDPI, vol. 16(16), pages 1-19, August.
    2. Dubravko Žigman & Tomislav Tomiša & Krešimir Osman, 2023. "Methodology Presentation for the Configuration Optimization of Hybrid Electrical Energy Systems," Energies, MDPI, vol. 16(5), pages 1-25, February.
    3. Kimsrornn Khon & Chhith Chhlonh & Vannak Vai & Marie-Cecile Alvarez-Herault & Bertrand Raison & Long Bun, 2023. "Comprehensive Low Voltage Microgrid Planning Methodology for Rural Electrification," Sustainability, MDPI, vol. 15(3), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soroush Oshnoei & Mohammadreza Aghamohammadi & Siavash Oshnoei & Arman Oshnoei & Behnam Mohammadi-Ivatloo, 2021. "Provision of Frequency Stability of an Islanded Microgrid Using a Novel Virtual Inertia Control and a Fractional Order Cascade Controller," Energies, MDPI, vol. 14(14), pages 1-24, July.
    2. Shaila Arif & Ata E Rabbi & Shams Uddin Ahmed & Molla Shahadat Hossain Lipu & Taskin Jamal & Tareq Aziz & Mahidur R. Sarker & Amna Riaz & Talal Alharbi & Muhammad Majid Hussain, 2022. "Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    3. Charles Newbold & Mohammad Akrami & Mahdieh Dibaj, 2021. "Scenarios, Financial Viability and Pathways of Localized Hybrid Energy Generation Systems around the United Kingdom," Energies, MDPI, vol. 14(18), pages 1-27, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5003-:d:858620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.