IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3794-d581256.html
   My bibliography  Save this article

Performance Study of a Bladeless Microturbine

Author

Listed:
  • Krzysztof Rusin

    (Department of Power Engineering and Turbomachinery, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Włodzimierz Wróblewski

    (Department of Power Engineering and Turbomachinery, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Sebastian Rulik

    (Department of Power Engineering and Turbomachinery, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Mirosław Majkut

    (Department of Power Engineering and Turbomachinery, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Michał Strozik

    (Department of Power Engineering and Turbomachinery, Silesian University of Technology, 44-100 Gliwice, Poland)

Abstract

The paper presents a comprehensive numerical and experimental analysis of the Tesla turbine. The turbine rotor had 5 discs with 160 mm in diameter and inter-disc gap equal to 0.75 mm. The nozzle apparatus consisted of 4 diverging nozzles with 2.85 mm in height of minimal cross-section. The investigations were carried out on air in subsonic flow regime for three pressure ratios: 1.4, 1.6 and 1.88. Maximal generated power was equal to 126 W and all power characteristics were in good agreement with numerical calculations. For each pressure ratio, maximal efficiency was approximately the same in the experiment, although numerical methods proved that efficiency slightly dropped with the increase of pressure ratio. Measurements included pressure distribution in the plenum chamber and tip clearance and temperature drop between the turbine’s inlet and the outlet. For each pressure ratio, the lowest value of the total temperature marked the highest efficiency of the turbine, although the lowest static temperature was shifted towards higher rotational speeds. The turbine efficiency could surpass 20% assuming the elimination of the impact of the lateral gaps between the discs and the casing. The presented data can be used as a benchmark for the validation of analytical and numerical models.

Suggested Citation

  • Krzysztof Rusin & Włodzimierz Wróblewski & Sebastian Rulik & Mirosław Majkut & Michał Strozik, 2021. "Performance Study of a Bladeless Microturbine," Energies, MDPI, vol. 14(13), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3794-:d:581256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3794/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3794/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ciappi, L. & Fiaschi, D. & Niknam, P.H. & Talluri, L., 2019. "Computational investigation of the flow inside a Tesla turbine rotor," Energy, Elsevier, vol. 173(C), pages 207-217.
    2. Wenjiao Qi & Qinghua Deng & Zhinan Chi & Lehao Hu & Qi Yuan & Zhenping Feng, 2019. "Influence of Disc Tip Geometry on the Aerodynamic Performance and Flow Characteristics of Multichannel Tesla Turbines," Energies, MDPI, vol. 12(3), pages 1-23, February.
    3. Wenjiao Qi & Qinghua Deng & Yu Jiang & Qi Yuan & Zhenping Feng, 2018. "Disc Thickness and Spacing Distance Impacts on Flow Characteristics of Multichannel Tesla Turbines," Energies, MDPI, vol. 12(1), pages 1-25, December.
    4. Talluri, Lorenzo & Dumont, Olivier & Manfrida, Giampaolo & Lemort, Vincent & Fiaschi, Daniele, 2020. "Geometry definition and performance assessment of Tesla turbines for ORC," Energy, Elsevier, vol. 211(C).
    5. Rusin, Andrzej & Wojaczek, Adam, 2015. "Trends of changes in the power generation system structure and their impact on the system reliability," Energy, Elsevier, vol. 92(P1), pages 128-134.
    6. Laugs, Gideon A.H. & Benders, René M.J. & Moll, Henri C., 2020. "Balancing responsibilities: Effects of growth of variable renewable energy, storage, and undue grid interaction," Energy Policy, Elsevier, vol. 139(C).
    7. Manfrida, G. & Pacini, L. & Talluri, L., 2018. "An upgraded Tesla turbine concept for ORC applications," Energy, Elsevier, vol. 158(C), pages 33-40.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomazoni, André Luis Ribeiro & Ermel, Conrado & Schneider, Paulo Smith & Vieira, Lara Werncke & Hunt, Julian David & Ferreira, Sandro Barros & Rech, Charles & Gouvêa, Vinicius Santorum, 2022. "Influence of operational parameters on the performance of Tesla turbines: Experimental investigation of a small-scale turbine," Energy, Elsevier, vol. 261(PB).
    2. Talluri, Lorenzo & Dumont, Olivier & Manfrida, Giampaolo & Lemort, Vincent & Fiaschi, Daniele, 2020. "Geometry definition and performance assessment of Tesla turbines for ORC," Energy, Elsevier, vol. 211(C).
    3. Pacini, Leonardo & Ciappi, Lorenzo & Talluri, Lorenzo & Fiaschi, Daniele & Manfrida, Giampaolo & Smolka, Jacek, 2020. "Computational investigation of partial admission effects on the flow field of a tesla turbine for ORC applications," Energy, Elsevier, vol. 212(C).
    4. Rusin, K. & Wróblewski, W. & Rulik, S., 2021. "Efficiency based optimization of a Tesla turbine," Energy, Elsevier, vol. 236(C).
    5. Moradi, Ramin & Habib, Emanuele & Bocci, Enrico & Cioccolanti, Luca, 2020. "Investigation on the use of a novel regenerative flow turbine in a micro-scale Organic Rankine Cycle unit," Energy, Elsevier, vol. 210(C).
    6. Martyna Tomala & Andrzej Rusin, 2022. "Risk-Based Operation and Maintenance Planning of Steam Turbine with the Long In-Service Time," Energies, MDPI, vol. 15(14), pages 1-17, July.
    7. Lisheng Pan & Huaixin Wang, 2019. "Experimental Investigation on Performance of an Organic Rankine Cycle System Integrated with a Radial Flow Turbine," Energies, MDPI, vol. 12(4), pages 1-20, February.
    8. Hanaa Feleafel & Jovana Radulovic & Michel Leseure, 2024. "Should We Have Selfish Microgrids?," Energies, MDPI, vol. 17(16), pages 1-24, August.
    9. Shariatkhah, Mohammad-Hossein & Haghifam, Mahmoud-Reza & Chicco, Gianfranco & Parsa-Moghaddam, Mohsen, 2016. "Adequacy modeling and evaluation of multi-carrier energy systems to supply energy services from different infrastructures," Energy, Elsevier, vol. 109(C), pages 1095-1106.
    10. Abbas Aghagoli & Mikhail Sorin & Mohammed Khennich, 2022. "Exergy Efficiency and COP Improvement of a CO 2 Transcritical Heat Pump System by Replacing an Expansion Valve with a Tesla Turbine," Energies, MDPI, vol. 15(14), pages 1-16, July.
    11. Martyna Tomala & Andrzej Rusin & Adam Wojaczek, 2020. "Risk-Based Planning of Diagnostic Testing of Turbines Operating with Increased Flexibility," Energies, MDPI, vol. 13(13), pages 1-16, July.
    12. Ciappi, L. & Fiaschi, D. & Niknam, P.H. & Talluri, L., 2019. "Computational investigation of the flow inside a Tesla turbine rotor," Energy, Elsevier, vol. 173(C), pages 207-217.
    13. Nien-Che Yang & Yong-Chang Zhang & Eunike Widya Adinda, 2022. "Sizing and Sitting of Battery Energy Storage Systems in Distribution Networks with Transient Stability Consideration," Mathematics, MDPI, vol. 10(19), pages 1-25, September.
    14. Sajid, Mohammad & Raza, Zahid, 2017. "Energy-aware stochastic scheduler for batch of precedence-constrained jobs on heterogeneous computing system," Energy, Elsevier, vol. 125(C), pages 258-274.
    15. Michaela Makešová & Michaela Valentová, 2021. "The Concept of Multiple Impacts of Renewable Energy Sources: A Critical Review," Energies, MDPI, vol. 14(11), pages 1-21, May.
    16. Henrik Zsiborács & Gábor Pintér & András Vincze & Nóra Hegedűsné Baranyai, 2022. "Wind Power Generation Scheduling Accuracy in Europe: An Overview of ENTSO-E Countries," Sustainability, MDPI, vol. 14(24), pages 1-58, December.
    17. Naseri, Ali & Moradi, Ramin & Norris, Stuart & Subiantoro, Alison, 2022. "Experimental investigation of a revolving vane expander in a micro-scale organic Rankine cycle system for low-grade waste heat recovery," Energy, Elsevier, vol. 253(C).
    18. Wojciech Kosman & Andrzej Rusin, 2020. "The Application of Molten Salt Energy Storage to Advance the Transition from Coal to Green Energy Power Systems," Energies, MDPI, vol. 13(9), pages 1-18, May.
    19. Kevin McDonnell & Levente Molnár & Mary Harty & Fionnuala Murphy, 2020. "Feasibility Study of Carbon Dioxide Plume Geothermal Systems in Germany−Utilising Carbon Dioxide for Energy," Energies, MDPI, vol. 13(10), pages 1-24, May.
    20. Chie Hoon Song, 2021. "Exploring and Predicting the Knowledge Development in the Field of Energy Storage: Evidence from the Emerging Startup Landscape," Energies, MDPI, vol. 14(18), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3794-:d:581256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.