IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p4954-d857181.html
   My bibliography  Save this article

Exploring Natural Fermented Foods as a Source for New Efficient Thermotolerant Yeasts for the Production of Second-Generation Bioethanol

Author

Listed:
  • Mouna Aouine

    (Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Techniques, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco
    AgroBioSciences Department, Mohammed VI Polytechnic University, Benguérir 43150, Morocco)

  • Doha Elalami

    (AgroBioSciences Department, Mohammed VI Polytechnic University, Benguérir 43150, Morocco)

  • Saad Ibnsouda Koraichi

    (Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Techniques, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco)

  • Abdellatif Haggoud

    (Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Techniques, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco)

  • Abdellatif Barakat

    (AgroBioSciences Department, Mohammed VI Polytechnic University, Benguérir 43150, Morocco
    UMR IATE, INRAE, Agro Institute of Montpellier, University of Montpellier, 34060 Montpellier, France)

Abstract

Considering the cost-effectiveness of bioethanol production at high temperatures, there is an enduring need to find new thermotolerant ethanologenic yeasts. In this study, a total of eighteen thermotolerant yeasts were isolated from various natural fermented products in Morocco. Ethanol production using 50 g/L glucose or 50 g/L xylose as the sole carbon source revealed potential yeasts with high productivities and volumetric ethanol productivities at high temperatures. Based on molecular identification, the selected thermotolerant fermentative isolates were affiliated with Pichia kudriavzevii , Kluyveromyces marxianus , and Kluyveromyces sp. During the simultaneous saccharification and fermentation of lignocellulosic biomass at a high temperature (42 °C), the designated yeast P. kudriavzevii YSR7 produced an ethanol concentration of 22.36 g/L, 18.2 g/L and 6.34 g/L from 100 g/L barley straw (BS), chickpea straw (CS), and olive tree pruning (OTP), respectively. It also exhibited multi-stress tolerance, such as ethanol, acetic acid, and osmotic tolerance. Therefore, the yeast P. kudriavzevii YSR7 showed promising attributes for biorefinery-scale ethanol production in the future.

Suggested Citation

  • Mouna Aouine & Doha Elalami & Saad Ibnsouda Koraichi & Abdellatif Haggoud & Abdellatif Barakat, 2022. "Exploring Natural Fermented Foods as a Source for New Efficient Thermotolerant Yeasts for the Production of Second-Generation Bioethanol," Energies, MDPI, vol. 15(14), pages 1-11, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4954-:d:857181
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/4954/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/4954/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filimonau, Viachaslau & Högström, Michaela, 2017. "The attitudes of UK tourists to the use of biofuels in civil aviation: An exploratory study," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 84-94.
    2. Yasuda, Masahide & Matsumoto, Tomoko & Yamashita, Toshiaki, 2018. "Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1627-1635.
    3. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    4. Zhang, Chen & Sun, Zongxuan, 2017. "Trajectory-based combustion control for renewable fuels in free piston engines," Applied Energy, Elsevier, vol. 187(C), pages 72-83.
    5. Andrea Patané & Giorgio Jansen & Piero Conca & Giovanni Carapezza & Jole Costanza & Giuseppe Nicosia, 2019. "Multi-objective optimization of genome-scale metabolic models: the case of ethanol production," Annals of Operations Research, Springer, vol. 276(1), pages 211-227, May.
    6. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    7. Sánchez, S. & Lozano, L.J. & Godínez, C. & Juan, D. & Pérez, A. & Hernández, F.J., 2010. "Carob pod as a feedstock for the production of bioethanol in Mediterranean areas," Applied Energy, Elsevier, vol. 87(11), pages 3417-3424, November.
    8. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    9. Diep, Nhu Quynh & Fujimoto, Shinji & Minowa, Tomoaki & Sakanishi, Kinya & Nakagoshi, Nobukazu, 2012. "Estimation of the potential of rice straw for ethanol production and the optimum facility size for different regions in Vietnam," Applied Energy, Elsevier, vol. 93(C), pages 205-211.
    10. Phanankosi Moyo & Mahluli Moyo & Donatus Dube & Oswell Rusinga, 2013. "Biofuel Policy as a Key Driver for Sustainable Development in the Biofuel Sector: The Missing Ingredient in Zimbabwe’s Biofuel Pursuit," Modern Applied Science, Canadian Center of Science and Education, vol. 8(1), pages 1-36, February.
    11. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    12. Yao, Yung-Chen & Tsai, Jiun-Horng & Wang, I-Ting, 2013. "Emissions of gaseous pollutant from motorcycle powered by ethanol–gasoline blend," Applied Energy, Elsevier, vol. 102(C), pages 93-100.
    13. Arkadiusz Piwowar & Maciej Dzikuć, 2019. "Development of Renewable Energy Sources in the Context of Threats Resulting from Low-Altitude Emissions in Rural Areas in Poland: A Review," Energies, MDPI, vol. 12(18), pages 1-15, September.
    14. Lenka Rumánková & Luboš Smutka, 2013. "Global sugar market - the analysis of factors influencing supply and demand," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 61(2), pages 463-471.
    15. Starfelt, Fredrik & Daianova, Lilia & Yan, Jinyue & Thorin, Eva & Dotzauer, Erik, 2012. "The impact of lignocellulosic ethanol yields in polygeneration with district heating – A case study," Applied Energy, Elsevier, vol. 92(C), pages 791-799.
    16. Akroum-Amrouche, Dahbia & Abdi, Nadia & Lounici, Hakim & Mameri, Nabil, 2011. "Effect of physico-chemical parameters on biohydrogen production and growth characteristics by batch culture of Rhodobacter sphaeroides CIP 60.6," Applied Energy, Elsevier, vol. 88(6), pages 2130-2135, June.
    17. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    18. Aloisio S. Nascimento Filho & Rafael G. O. dos Santos & João Gabriel A. Calmon & Peterson A. Lobato & Marcelo A. Moret & Thiago B. Murari & Hugo Saba, 2022. "Induction of a Consumption Pattern for Ethanol and Gasoline in Brazil," Sustainability, MDPI, vol. 14(15), pages 1-11, July.
    19. Katia A. Figueroa-Rodríguez & Francisco Hernández-Rosas & Benjamín Figueroa-Sandoval & Joel Velasco-Velasco & Noé Aguilar Rivera, 2019. "What Has Been the Focus of Sugarcane Research? A Bibliometric Overview," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    20. Poder, Thomas G. & He, Jie, 2017. "Willingness to pay for a cleaner car: The case of car pollution in Quebec and France," Energy, Elsevier, vol. 130(C), pages 48-54.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4954-:d:857181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.