IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p4945-d856864.html
   My bibliography  Save this article

Heat and Mass Transfer of Micropolar-Casson Nanofluid over Vertical Variable Stretching Riga Sheet

Author

Listed:
  • Nadeem Abbas

    (Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia)

  • Wasfi Shatanawi

    (Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
    Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
    Department of Mathematics, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan)

Abstract

In this analysis, we considered a comparative study of micropolar Casson nanofluid flow on a vertical nonlinear Riga stretching sheet. Effects of thermal and velocity slip are considered under thermophoresis and Brownian motions. Select nonlinear PDEs transformed into nonlinear coupled ODEs using the set of suitable transformations. The nonlinear coupled ODEs are solved through a numerical technique along with the Runge–Kutta 4th-order scheme. The impacts of pertinent flow parameters on skin friction, Nusselt number, temperature, and velocity distributions are depicted through tabular and graphical form. Brownian motion and the magnitude of the Sherwood number have opposite performances; likewise, the Nusselt number and Brownian motion also have opposite performances. The Sherwood number and Nusselt number succeeded with higher values. The increment of the Casson fluid parameter declined with fluid velocity, which shows that thickness is reduced due to the increment of the Casson fluid parameter. Fluid velocity distribution curves show increasing behavior due to increments of the micropolar parameter.

Suggested Citation

  • Nadeem Abbas & Wasfi Shatanawi, 2022. "Heat and Mass Transfer of Micropolar-Casson Nanofluid over Vertical Variable Stretching Riga Sheet," Energies, MDPI, vol. 15(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4945-:d:856864
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/4945/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/4945/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kartini Ahmad & Anuar Ishak & Roslinda Nazar, 2013. "Micropolar Fluid Flow and Heat Transfer over a Nonlinearly Stretching Plate with Viscous Dissipation," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-5, June.
    2. S. Nadeem & Abdul Rehman & Changhoon Lee & Jinho Lee, 2012. "Boundary Layer Flow of Second Grade Fluid in a Cylinder with Heat Transfer," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-13, July.
    3. Megahed, Ahmed M. & Reddy, M. Gnaneswara & Abbas, W., 2021. "Modeling of MHD fluid flow over an unsteady stretching sheet with thermal radiation, variable fluid properties and heat flux," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 583-593.
    4. Muhammad, Noor & Nadeem, S. & Issakhov, Alibek, 2020. "Finite volume method for mixed convection flow of Ag–ethylene glycol nanofluid flow in a cavity having thin central heater," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Kayalvizhi & A. G. Vijaya Kumar & Hakan F. Öztop & Ndolane Sene & Nidal H. Abu-Hamdeh, 2022. "Heat Transfer Enhancement through Thermodynamical Activity of H 2 O/Clay Nanofluid Flow over an Infinite Upright Plate with Caputo Fractional-Order Derivative," Energies, MDPI, vol. 15(16), pages 1-18, August.
    2. Yudi Wang & Guoqiang Xu, 2022. "Numerical Simulation of Thermal Storage Performance of Different Concrete Floors," Sustainability, MDPI, vol. 14(19), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farooq Ahmad & A. Othman Almatroud & Sajjad Hussain & Shan E. Farooq & Roman Ullah, 2020. "Numerical Solution of Nonlinear Diff. Equations for Heat Transfer in Micropolar Fluids over a Stretching Domain," Mathematics, MDPI, vol. 8(5), pages 1-18, May.
    2. Mohamed E. Nasr & Machireddy Gnaneswara Reddy & W. Abbas & Ahmed M. Megahed & Essam Awwad & Khalil M. Khalil, 2022. "Analysis of Non-Linear Radiation and Activation Energy Analysis on Hydromagnetic Reiner–Philippoff Fluid Flow with Cattaneo–Christov Double Diffusions," Mathematics, MDPI, vol. 10(9), pages 1-18, May.
    3. Khalil M. Khalil & A. Soleiman & Ahmed M. Megahed & W. Abbas, 2022. "Impact of Variable Fluid Properties and Double Diffusive Cattaneo–Christov Model on Dissipative Non-Newtonian Fluid Flow Due to a Stretching Sheet," Mathematics, MDPI, vol. 10(7), pages 1-12, April.
    4. Alam, Jahangir & Murtaza, M.G. & Tzirtzilakis, E.E. & Ferdows, M., 2022. "Application of Biomagnetic Fluid Dynamics modeling for simulation of flow with magnetic particles and variable fluid properties over a stretching cylinder," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 438-462.
    5. Haifaa Alrihieli & Mohammed Alrehili & Ahmed M. Megahed, 2022. "Radiative MHD Nanofluid Flow Due to a Linearly Stretching Sheet with Convective Heating and Viscous Dissipation," Mathematics, MDPI, vol. 10(24), pages 1-13, December.
    6. Khalil Ur Rehman & Wasfi Shatanawi & Andaç Batur Çolak, 2023. "Computational Analysis on Magnetized and Non-Magnetized Boundary Layer Flow of Casson Fluid Past a Cylindrical Surface by Using Artificial Neural Networking," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
    7. Iskandar Waini & Anuar Ishak & Ioan Pop, 2021. "Nanofluid Flow on a Shrinking Cylinder with Al 2 O 3 Nanoparticles," Mathematics, MDPI, vol. 9(14), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4945-:d:856864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.