IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i14p1612-d590792.html
   My bibliography  Save this article

Nanofluid Flow on a Shrinking Cylinder with Al 2 O 3 Nanoparticles

Author

Listed:
  • Iskandar Waini

    (Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Melaka 76100, Malaysia
    Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia UKM, Bangi 43600, Malaysia)

  • Anuar Ishak

    (Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia UKM, Bangi 43600, Malaysia)

  • Ioan Pop

    (Department of Mathematics, Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania)

Abstract

This study investigates the nanofluid flow towards a shrinking cylinder consisting of Al 2 O 3 nanoparticles. Here, the flow is subjected to prescribed surface heat flux. The similarity variables are employed to gain the similarity equations. These equations are solved via the bvp4c solver. From the findings, a unique solution is found for the shrinking strength λ ≥ − 1 . Meanwhile, the dual solutions are observed when λ c < λ < − 1 . Furthermore, the friction factor R e x 1 / 2 C f and the heat transfer rate R e x − 1 / 2 N u x increase with the rise of Al 2 O 3 nanoparticles φ and the curvature parameter γ . Quantitatively, the rates of heat transfer R e x − 1 / 2 N u x increase up to 3.87% when φ increases from 0 to 0.04, and 6.69% when γ increases from 0.05 to 0.2. Besides, the profiles of the temperature θ ( η ) and the velocity f ’ ( η ) on the first solution incline for larger γ , but their second solutions decline. Moreover, it is noticed that the streamlines are separated into two regions. Finally, it is found that the first solution is stable over time.

Suggested Citation

  • Iskandar Waini & Anuar Ishak & Ioan Pop, 2021. "Nanofluid Flow on a Shrinking Cylinder with Al 2 O 3 Nanoparticles," Mathematics, MDPI, vol. 9(14), pages 1-13, July.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1612-:d:590792
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/14/1612/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/14/1612/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Megahed, Ahmed M. & Reddy, M. Gnaneswara & Abbas, W., 2021. "Modeling of MHD fluid flow over an unsteady stretching sheet with thermal radiation, variable fluid properties and heat flux," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 583-593.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadeem Abbas & Wasfi Shatanawi, 2022. "Heat and Mass Transfer of Micropolar-Casson Nanofluid over Vertical Variable Stretching Riga Sheet," Energies, MDPI, vol. 15(14), pages 1-20, July.
    2. Mohamed E. Nasr & Machireddy Gnaneswara Reddy & W. Abbas & Ahmed M. Megahed & Essam Awwad & Khalil M. Khalil, 2022. "Analysis of Non-Linear Radiation and Activation Energy Analysis on Hydromagnetic Reiner–Philippoff Fluid Flow with Cattaneo–Christov Double Diffusions," Mathematics, MDPI, vol. 10(9), pages 1-18, May.
    3. Khalil M. Khalil & A. Soleiman & Ahmed M. Megahed & W. Abbas, 2022. "Impact of Variable Fluid Properties and Double Diffusive Cattaneo–Christov Model on Dissipative Non-Newtonian Fluid Flow Due to a Stretching Sheet," Mathematics, MDPI, vol. 10(7), pages 1-12, April.
    4. Alam, Jahangir & Murtaza, M.G. & Tzirtzilakis, E.E. & Ferdows, M., 2022. "Application of Biomagnetic Fluid Dynamics modeling for simulation of flow with magnetic particles and variable fluid properties over a stretching cylinder," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 438-462.
    5. Haifaa Alrihieli & Mohammed Alrehili & Ahmed M. Megahed, 2022. "Radiative MHD Nanofluid Flow Due to a Linearly Stretching Sheet with Convective Heating and Viscous Dissipation," Mathematics, MDPI, vol. 10(24), pages 1-13, December.
    6. Khalil Ur Rehman & Wasfi Shatanawi & Andaç Batur Çolak, 2023. "Computational Analysis on Magnetized and Non-Magnetized Boundary Layer Flow of Casson Fluid Past a Cylindrical Surface by Using Artificial Neural Networking," Mathematics, MDPI, vol. 11(2), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1612-:d:590792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.