IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4931-d856446.html
   My bibliography  Save this article

Method for Determining Sensor Location for Automated Shading Control in Office Building

Author

Listed:
  • Cui Li

    (School of Mechanical Engineering, Tongji University, Shanghai 200092, China)

  • Xuyun Yu

    (School of Mechanical Engineering, Tongji University, Shanghai 200092, China)

  • Zhengrong Li

    (School of Mechanical Engineering, Tongji University, Shanghai 200092, China)

  • Yi Zhao

    (COMAC Shanghai Aircraft Design and Research Institute, Shanghai 201210, China)

  • Yuxin Liu

    (School of Mechanical Engineering, Tongji University, Shanghai 200092, China)

  • Xiangchao Lian

    (School of Mechanical Engineering, Tongji University, Shanghai 200092, China)

  • Yanbo Feng

    (School of Mechanical Engineering, Tongji University, Shanghai 200092, China)

  • Han Zhu

    (School of Mechanical Engineering, Tongji University, Shanghai 200092, China)

Abstract

Shading facilities are important technology to enable the adjustment of the indoor light and heat environment, and the control logic of the technology relies on data collected by sensors. The sensor position is generally arranged on the work surface, which is only suitable for single rooms with fixed locations. For open-plan offices or other large offices, more study of detailed designs for the sensor position is required. Therefore, various sensor locations for different spaces will be investigated. Based on existing research, the UDI 2000 lux [50%] and UDI 450–2000 lux [50%] are the key indices for measuring sensor location. The Entropy Weight method is used to determine the weight of each index, and the ideal point method (TOPSIS method) is used to select the best sensor location. Based on the results, recommendations are provided for different space scales, window-to-wall ratios, and building orientations of offices for shading control sensor location.

Suggested Citation

  • Cui Li & Xuyun Yu & Zhengrong Li & Yi Zhao & Yuxin Liu & Xiangchao Lian & Yanbo Feng & Han Zhu, 2022. "Method for Determining Sensor Location for Automated Shading Control in Office Building," Energies, MDPI, vol. 15(13), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4931-:d:856446
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4931/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4931/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlucci, Salvatore & Causone, Francesco & De Rosa, Francesco & Pagliano, Lorenzo, 2015. "A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 1016-1033.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    2. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    3. Yunsong Han & Hong Yu & Cheng Sun, 2017. "Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    4. Roberta Moschetti & Shabnam Homaei & Ellika Taveres-Cachat & Steinar Grynning, 2022. "Assessing Responsive Building Envelope Designs through Robustness-Based Multi-Criteria Decision Making in Zero-Emission Buildings," Energies, MDPI, vol. 15(4), pages 1-27, February.
    5. Jie Li & Qichao Ban & Xueming (Jimmy) Chen & Jiawei Yao, 2019. "Glazing Sizing in Large Atrium Buildings: A Perspective of Balancing Daylight Quantity and Visual Comfort," Energies, MDPI, vol. 12(4), pages 1-14, February.
    6. Seyedeh Farzaneh Mousavi Motlagh & Ali Sohani & Mohammad Djavad Saghafi & Hoseyn Sayyaadi & Benedetto Nastasi, 2021. "The Road to Developing Economically Feasible Plans for Green, Comfortable and Energy Efficient Buildings," Energies, MDPI, vol. 14(3), pages 1-30, January.
    7. Pilechiha, Peiman & Mahdavinejad, Mohammadjavad & Pour Rahimian, Farzad & Carnemolla, Phillippa & Seyedzadeh, Saleh, 2020. "Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency," Applied Energy, Elsevier, vol. 261(C).
    8. Marchini, F. & Chiatti, C. & Fabiani, C. & Pisello, A.L., 2023. "Development of an innovative translucent–photoluminescent coating for smart windows applications: An experimental and numerical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    9. Ikuzwe, Alice & Ye, Xianming & Xia, Xiaohua, 2020. "Energy-maintenance optimization for retrofitted lighting system incorporating luminous flux degradation to enhance visual comfort," Applied Energy, Elsevier, vol. 261(C).
    10. Qing Yang & Nianping Li, 2022. "Subjective and Objective Evaluation of Shading on Thermal, Visual, and Acoustic Properties of Indoor Environments," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    11. Vincenzo Costanzo & Gianpiero Evola & Luigi Marletta & Fabiana Pistone Nascone, 2018. "Application of Climate Based Daylight Modelling to the Refurbishment of a School Building in Sicily," Sustainability, MDPI, vol. 10(8), pages 1-19, July.
    12. Galatioto, A. & Beccali, M., 2016. "Aspects and issues of daylighting assessment: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 852-860.
    13. Sehar, Fakeha & Pipattanasomporn, Manisa & Rahman, Saifur, 2016. "An energy management model to study energy and peak power savings from PV and storage in demand responsive buildings," Applied Energy, Elsevier, vol. 173(C), pages 406-417.
    14. Xianfeng Huang & Shangyou Wei & Shangyu Zhu, 2020. "Study on Daylighting Optimization in the Exhibition Halls of Museums for Chinese Calligraphy and Painting Works," Energies, MDPI, vol. 13(1), pages 1-15, January.
    15. Gabriele Lobaccaro & Salvatore Carlucci & Erica Löfström, 2016. "A Review of Systems and Technologies for Smart Homes and Smart Grids," Energies, MDPI, vol. 9(5), pages 1-33, May.
    16. Baloch, Ashfaque Ahmed & Shaikh, Pervez Hameed & Shaikh, Faheemullah & Leghari, Zohaib Hussain & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2018. "Simulation tools application for artificial lighting in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3007-3026.
    17. Sewon Lee & Kyung Sun Lee, 2019. "A Study on the Improvement of the Evaluation Scale of Discomfort Glare in Educational Facilities," Energies, MDPI, vol. 12(17), pages 1-21, August.
    18. Stefano Riffelli, 2021. "Global Comfort Indices in Indoor Environments: A Survey," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    19. Sánchez-Pantoja, Núria & Vidal, Rosario & Pastor, M. Carmen, 2018. "Aesthetic impact of solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 227-238.
    20. Vassiliades, Constantinos & Michael, Aimilios & Savvides, Andreas & Kalogirou, Soteris, 2018. "Improvement of passive behaviour of existing buildings through the integration of active solar energy systems," Energy, Elsevier, vol. 163(C), pages 1178-1192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4931-:d:856446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.