IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4892-d855432.html
   My bibliography  Save this article

Automatic Optimization of Input Split and Bias Voltage in Digitally Controlled Dual-Input Doherty RF PAs

Author

Listed:
  • Mattia Mengozzi

    (Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi“, University of Bologna, 40136 Bologna, Italy)

  • Gian Piero Gibiino

    (Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi“, University of Bologna, 40136 Bologna, Italy)

  • Alberto Maria Angelotti

    (Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi“, University of Bologna, 40136 Bologna, Italy)

  • Alberto Santarelli

    (Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi“, University of Bologna, 40136 Bologna, Italy)

  • Corrado Florian

    (Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi“, University of Bologna, 40136 Bologna, Italy)

  • Paolo Colantonio

    (Department of Electronic Engineering, University of Roma Tor Vergata, 00133 Rome, Italy)

Abstract

Digitally controlled Dual-Input Doherty Power Amplifiers (DIDPAs) are becoming increasingly popular due to the flexible input signal splitting between the main and auxiliary stages. Nevertheless, the presence of many degrees of freedom, e.g., input amplitude split and phase displacement as well as biasing for multiple stages, often involves inefficient trial-and-error procedures to reach a suitable PA performance. This article presents automated parameter setting based on coordinate descent or Bayesian optimizations, demonstrating an improvement in the performance in terms of RF output power and power-added efficiency (PAE) in the presence of broadband-modulated signals, yet maintaining suitable linear behavior for, e.g., communications applications.

Suggested Citation

  • Mattia Mengozzi & Gian Piero Gibiino & Alberto Maria Angelotti & Alberto Santarelli & Corrado Florian & Paolo Colantonio, 2022. "Automatic Optimization of Input Split and Bias Voltage in Digitally Controlled Dual-Input Doherty RF PAs," Energies, MDPI, vol. 15(13), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4892-:d:855432
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4892/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4892/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Markus Hartikainen & Kaisa Miettinen & Margaret Wiecek, 2012. "PAINT: Pareto front interpolation for nonlinear multiobjective optimization," Computational Optimization and Applications, Springer, vol. 52(3), pages 845-867, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Zhang & Chunyu Hu & Xia Liu & Jun Wang & Wenxu Zhong & Ping Tian & Shuai Lin & Weimin Shi, 2023. "Development Review of Broadband and Multi-Band Outphasing Power Amplifiers for High-Efficiency Amplification," Energies, MDPI, vol. 17(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Mehdi, Er Raqabi & Ilyas, Himmich & Nizar, El Hachemi & Issmaïl, El Hallaoui & François, Soumis, 2023. "Incremental LNS framework for integrated production, inventory, and vessel scheduling: Application to a global supply chain," Omega, Elsevier, vol. 116(C).
    2. Saeed Vasebi & Yeganeh M. Hayeri, 2021. "Collective Driving to Mitigate Climate Change: Collective-Adaptive Cruise Control," Sustainability, MDPI, vol. 13(16), pages 1-30, August.
    3. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    4. Oliver Stein & Maximilian Volk, 2023. "Generalized Polarity and Weakest Constraint Qualifications in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1156-1190, September.
    5. Alberto Pajares & Xavier Blasco & Juan Manuel Herrero & Miguel A. Martínez, 2021. "A Comparison of Archiving Strategies for Characterization of Nearly Optimal Solutions under Multi-Objective Optimization," Mathematics, MDPI, vol. 9(9), pages 1-28, April.
    6. Gabriele Eichfelder & Corinna Krüger & Anita Schöbel, 2017. "Decision uncertainty in multiobjective optimization," Journal of Global Optimization, Springer, vol. 69(2), pages 485-510, October.
    7. Morovati, Vahid & Pourkarimi, Latif, 2019. "Extension of Zoutendijk method for solving constrained multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 273(1), pages 44-57.
    8. Francisco Salas-Molina & Juan A. Rodriguez-Aguilar & Pablo Díaz-García, 2018. "Selecting cash management models from a multiobjective perspective," Annals of Operations Research, Springer, vol. 261(1), pages 275-288, February.
    9. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    10. Mitrović, Sandra & Baesens, Bart & Lemahieu, Wilfried & De Weerdt, Jochen, 2018. "On the operational efficiency of different feature types for telco Churn prediction," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1141-1155.
    11. Kalyan Shankar Bhattacharjee & Hemant Kumar Singh & Tapabrata Ray, 2017. "An approach to generate comprehensive piecewise linear interpolation of pareto outcomes to aid decision making," Journal of Global Optimization, Springer, vol. 68(1), pages 71-93, May.
    12. A. Garcia-Bernabeu & J. V. Salcedo & A. Hilario & D. Pla-Santamaria & Juan M. Herrero, 2019. "Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA," Complexity, Hindawi, vol. 2019, pages 1-12, December.
    13. Rebeca Ramirez Acosta & Chathura Wanigasekara & Emilie Frost & Tobias Brandt & Sebastian Lehnhoff & Christof Büskens, 2023. "Integration of Intelligent Neighbourhood Grids to the German Distribution Grid: A Perspective," Energies, MDPI, vol. 16(11), pages 1-16, May.
    14. Thibaut Mastrolia, 2017. "Moral hazard in welfare economics: on the advantage of Planner's advices to manage employees' actions," Papers 1706.01254, arXiv.org.
    15. Markus Hartikainen & Alberto Lovison, 2015. "PAINT–SiCon: constructing consistent parametric representations of Pareto sets in nonconvex multiobjective optimization," Journal of Global Optimization, Springer, vol. 62(2), pages 243-261, June.
    16. Hu, Shuozhuo & Li, Jian & Yang, Fubin & Yang, Zhen & Duan, Yuanyuan, 2020. "Multi-objective optimization of organic Rankine cycle using hydrofluorolefins (HFOs) based on different target preferences," Energy, Elsevier, vol. 203(C).
    17. Smedberg, Henrik & Bandaru, Sunith, 2023. "Interactive knowledge discovery and knowledge visualization for decision support in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1311-1329.
    18. Hadj Salem, Khadija & Silva, Elsa & Oliveira, José Fernando & Carravilla, Maria Antónia, 2023. "Mathematical models for the two-dimensional variable-sized cutting stock problem in the home textile industry," European Journal of Operational Research, Elsevier, vol. 306(2), pages 549-566.
    19. Suyun Liu & Luis Nunes Vicente, 2023. "Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 165-186, July.
    20. Seyed Sina Mohri & Meisam Akbarzadeh, 2019. "Locating key stations of a metro network using bi-objective programming: discrete and continuous demand mode," Public Transport, Springer, vol. 11(2), pages 321-340, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4892-:d:855432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.