IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4869-d854482.html
   My bibliography  Save this article

Influence of the Working Parameters of the Chassis Dynamometer on the Assessment of Tuning of Dual-Fuel Systems

Author

Listed:
  • Janusz Chojnowski

    (Faculty of Mechanical Engineering, Military University of Technology in Warsaw, 00-908 Warsaw, Poland)

  • Mirosław Karczewski

    (Faculty of Mechanical Engineering, Military University of Technology in Warsaw, 00-908 Warsaw, Poland)

Abstract

The article presents the justification for the necessity to use chassis dynamometers in the tuning process of dual-fuel trucks. The research system used and the research methodology are presented. The research results present the approach to solving problems related to setting the technical (physical) data of the tested vehicle on the dynamometer, selection of the vehicle engine operation range, the impact of the value of the forced load on the vehicle drive axle, selection of the dyno operation mode for the expected tasks and the impact of the correctness of the selection of the scope of the analysis of data on losses in the drive system. The article shows the above-mentioned influence on the test results on the dynamometer and on the tuning results. The article closes with a conclusion detailing prospects for developing the presented results.

Suggested Citation

  • Janusz Chojnowski & Mirosław Karczewski, 2022. "Influence of the Working Parameters of the Chassis Dynamometer on the Assessment of Tuning of Dual-Fuel Systems," Energies, MDPI, vol. 15(13), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4869-:d:854482
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4869/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4869/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Weifeng & Liu, Zhongchang & Wang, Zhongshu, 2016. "Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine," Energy, Elsevier, vol. 94(C), pages 728-741.
    2. Mirosław Karczewski & Marcin Wieczorek, 2021. "Assessment of the Impact of Applying a Non-Factory Dual-Fuel (Diesel/Natural Gas) Installation on the Traction Properties and Emissions of Selected Exhaust Components of a Road Semi-Trailer Truck Unit," Energies, MDPI, vol. 14(23), pages 1-27, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iman K. Reksowardojo & Hari Setiapraja & Mokhtar & Siti Yubaidah & Dieni Mansur & Agnes K. Putri, 2023. "A Study on Utilization of High-Ratio Biodiesel and Pure Biodiesel in Advanced Vehicle Technologies," Energies, MDPI, vol. 16(2), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Zhiqiang & Li, Bolun & Tian, Wei & Xia, Qi & Leng, Songpeng, 2019. "Influence of coupling action of oxygenated fuel and gas circuit oxygen on hydrocarbons formation in diesel engine," Energy, Elsevier, vol. 173(C), pages 196-206.
    2. Wei Tian & Yunlu Chu & Zhiqiang Han & Xiang Wang & Wenbin Yu & Xueshun Wu, 2019. "Experimental Study of the Effect of Intake Oxygen Concentration on Engine Combustion Process and Hydrocarbon Emissions with N-Butanol-Diesel Blended Fuel," Energies, MDPI, vol. 12(7), pages 1-17, April.
    3. Hussein A. Mahmood & Nor Mariah. Adam & B. B. Sahari & S. U. Masuri, 2017. "New Design of a CNG-H 2 -AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study," Energies, MDPI, vol. 10(9), pages 1-27, September.
    4. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Vuorinen, Ville & Larmi, Martti, 2019. "A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Wu, Horng-Wen & Fan, Chen-Ming & He, Jian-Yi & Hsu, Tzu-Ting, 2017. "Optimal factors estimation for diesel/methanol engines changing methanol injection timing and inlet air temperature," Energy, Elsevier, vol. 141(C), pages 1819-1828.
    6. T. M. Yunus Khan, 2020. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines," Energies, MDPI, vol. 13(17), pages 1-22, August.
    7. Park, Cheolwoong & Kim, Changgi & Lee, Sangho & Lee, Sunyoup & Lee, Janghee, 2019. "Comparative evaluation of performance and emissions of CNG engine for heavy-duty vehicles fueled with various caloric natural gases," Energy, Elsevier, vol. 174(C), pages 1-9.
    8. Lounici, M.S. & Benbellil, M.A. & Loubar, K. & Niculescu, D.C. & Tazerout, M., 2017. "Knock characterization and development of a new knock indicator for dual-fuel engines," Energy, Elsevier, vol. 141(C), pages 2351-2361.
    9. Yang, Kailin & Wang, Zhongshu & Zhang, Kechao & Wang, Dan & Xie, Fangxi & Xu, Yun & Yang, Kaiqiang, 2023. "Impact of natural gas injection timing on the combustion and emissions performance of a dual-direct-injection diesel/natural gas engine," Energy, Elsevier, vol. 270(C).
    10. Mirosław Karczewski & Grzegorz Szamrej, 2023. "Experimental Evaluation of the Effect of Replacing Diesel Fuel by CNG on the Emission of Harmful Exhaust Gas Components and Emission Changes in a Dual-Fuel Engine," Energies, MDPI, vol. 16(1), pages 1-32, January.
    11. Min Zhang & Wanhua Su & Zhi Jia, 2024. "Study of Efficient and Clean Combustion of Diesel–Natural Gas Engine at Low Loads with Concentration and Temperature Stratified Combustion," Energies, MDPI, vol. 17(17), pages 1-22, August.
    12. Shen, Zhaojie & Wang, Xinyan & Zhao, Hua & Lin, Bo & Shen, Yitao & Yang, Jianguo, 2021. "Numerical investigation of natural gas-diesel dual-fuel engine with different piston geometries and radial clearances," Energy, Elsevier, vol. 220(C).
    13. Sergejus Lebedevas & Tomas Čepaitis, 2021. "Parametric Analysis of the Combustion Cycle of a Diesel Engine for Operation on Natural Gas," Sustainability, MDPI, vol. 13(5), pages 1-23, March.
    14. Ma, Baodong & Yao, Anren & Yao, Chunde & Chen, Chao & Qu, Guofan & Wang, Wenchao & Ai, Youkai, 2021. "Multiple combustion modes existing in the engine operating in diesel methanol dual fuel," Energy, Elsevier, vol. 234(C).
    15. Benbellil, Messaoud Abdelalli & Lounici, Mohand Said & Loubar, Khaled & Tazerout, Mohand, 2022. "Investigation of natural gas enrichment with high hydrogen participation in dual fuel diesel engine," Energy, Elsevier, vol. 243(C).
    16. Siniša Martinić-Cezar & Zdeslav Jurić & Nur Assani & Branko Lalić, 2024. "Optimization of Fuel Consumption by Controlling the Load Distribution between Engines in an LNG Ship Electric Propulsion Plant," Energies, MDPI, vol. 17(15), pages 1-21, July.
    17. Liu, Jie & Wang, Junle & Zhao, Hongbo, 2018. "Optimization of the injection parameters and combustion chamber geometries of a diesel/natural gas RCCI engine," Energy, Elsevier, vol. 164(C), pages 837-852.
    18. Xu, Min & Cheng, Wei & Li, Zhi & Zhang, Hongfei & An, Tao & Meng, Zhaokang, 2016. "Pre-injection strategy for pilot diesel compression ignition natural gas engine," Applied Energy, Elsevier, vol. 179(C), pages 1185-1193.
    19. Tadeusz Dziubak & Mirosław Karczewski, 2022. "Experimental Studies of the Effect of Air Filter Pressure Drop on the Composition and Emission Changes of a Compression Ignition Internal Combustion Engine," Energies, MDPI, vol. 15(13), pages 1-31, June.
    20. Wang, Zhongshu & Chen, Wenjing & Wang, Dan & Tan, Manzhi & Liu, Zhongchang & Dou, Huili, 2016. "A novel combustion evaluation method based on in-cylinder pressure traces for diesel/natural gas dual fuel engines," Energy, Elsevier, vol. 115(P1), pages 1130-1137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4869-:d:854482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.