IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v115y2016ip1p1130-1137.html
   My bibliography  Save this article

A novel combustion evaluation method based on in-cylinder pressure traces for diesel/natural gas dual fuel engines

Author

Listed:
  • Wang, Zhongshu
  • Chen, Wenjing
  • Wang, Dan
  • Tan, Manzhi
  • Liu, Zhongchang
  • Dou, Huili

Abstract

To better understand the combustion process of the dual fuel engines, a novel evaluation method based on the in-cylinder pressure traces was proposed in this study. Two evaluation parameters, the in-cylinder pressure standard deviation and the coefficient of variation, were calculated from the measured in-cylinder pressure traces at every crank angle. The profile of in-cylinder pressure standard deviation shows that there is an obvious jump representing the overall combustion process. The effect of diesel injection timing shows that, by advancing diesel injection timing, the start of jump shows an initial advancing and then retarding trend. The profiles of in-cylinder pressure standard deviation or coefficient of variation show the change of combustion process as the pilot diesel injection timing is advanced. When the pilot diesel injection timing is later than 30°CA BTDC, there is a rapid rise and a higher main peak in the profiles of in-cylinder pressure standard deviation with the injection timing advancing. As the diesel injection timing is further advanced, the initial rapid rise shows an increasing trend while the main peak shows a weakening trend; and both of them finally overlap together when the diesel injection timing is earlier than 40°CA BTDC.

Suggested Citation

  • Wang, Zhongshu & Chen, Wenjing & Wang, Dan & Tan, Manzhi & Liu, Zhongchang & Dou, Huili, 2016. "A novel combustion evaluation method based on in-cylinder pressure traces for diesel/natural gas dual fuel engines," Energy, Elsevier, vol. 115(P1), pages 1130-1137.
  • Handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:1130-1137
    DOI: 10.1016/j.energy.2016.09.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216312725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.09.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Menghan & Zhang, Qiang & Li, Guoxiang & Shao, Sidong, 2015. "Experimental investigation on performance and heat release analysis of a pilot ignited direct injection natural gas engine," Energy, Elsevier, vol. 90(P2), pages 1251-1260.
    2. Li, Weifeng & Liu, Zhongchang & Wang, Zhongshu, 2016. "Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine," Energy, Elsevier, vol. 94(C), pages 728-741.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fangyuan Zhang & Zhongshu Wang & Jing Tian & Linlin Li & Kaibo Yu & Kunyi He, 2020. "Effect of EGR and Fuel Injection Strategies on the Heavy-Duty Diesel Engine Emission Performance under Transient Operation," Energies, MDPI, vol. 13(3), pages 1-17, January.
    2. Tian, Jiaqiang & Wang, Yujie & Liu, Chang & Chen, Zonghai, 2020. "Consistency evaluation and cluster analysis for lithium-ion battery pack in electric vehicles," Energy, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Wenwen & Li, Gesheng & Zhang, Zunhua & Long, Yanxiang & Zhang, Hanyuyang & Huang, Yong & Zhou, Mengni & Wei, Yi, 2023. "Effects of ammonia addition on the performance and emissions for a spark-ignition marine natural gas engine," Energy, Elsevier, vol. 272(C).
    2. Lei, Yan & Li, Yong & Qiu, Tao & Li, Yunqiang & Wang, Yupeng & Zhang, Chengguo & Liu, Jiaxing & Ding, Mengzhu & Liu, Xianwu & Peng, Guangyu, 2021. "Effects of high-pressure methane jet on premixed ignited flame in constant-volume bomb," Energy, Elsevier, vol. 220(C).
    3. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Vuorinen, Ville & Larmi, Martti, 2019. "A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Li, Menghan & Wei, Zhangning & Liu, Xiaori & Wang, Xiaoyan & Zhang, Qiang & Li, Zhenguo, 2021. "A numerical investigation on the effects of gaseous fuel composition in a pilot ignited direct injection natural gas engine," Energy, Elsevier, vol. 217(C).
    5. Park, Cheolwoong & Kim, Changgi & Lee, Sangho & Lee, Sunyoup & Lee, Janghee, 2019. "Comparative evaluation of performance and emissions of CNG engine for heavy-duty vehicles fueled with various caloric natural gases," Energy, Elsevier, vol. 174(C), pages 1-9.
    6. Lounici, M.S. & Benbellil, M.A. & Loubar, K. & Niculescu, D.C. & Tazerout, M., 2017. "Knock characterization and development of a new knock indicator for dual-fuel engines," Energy, Elsevier, vol. 141(C), pages 2351-2361.
    7. Min Zhang & Wanhua Su & Zhi Jia, 2024. "Study of Efficient and Clean Combustion of Diesel–Natural Gas Engine at Low Loads with Concentration and Temperature Stratified Combustion," Energies, MDPI, vol. 17(17), pages 1-22, August.
    8. Li, Menghan & Wu, Hanming & Zhang, Tiechen & Shen, Boxiong & Zhang, Qiang & Li, Zhenguo, 2020. "A comprehensive review of pilot ignited high pressure direct injection natural gas engines: Factors affecting combustion, emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Shen, Zhaojie & Wang, Xinyan & Zhao, Hua & Lin, Bo & Shen, Yitao & Yang, Jianguo, 2021. "Numerical investigation of natural gas-diesel dual-fuel engine with different piston geometries and radial clearances," Energy, Elsevier, vol. 220(C).
    10. Ma, Baodong & Yao, Anren & Yao, Chunde & Chen, Chao & Qu, Guofan & Wang, Wenchao & Ai, Youkai, 2021. "Multiple combustion modes existing in the engine operating in diesel methanol dual fuel," Energy, Elsevier, vol. 234(C).
    11. Siniša Martinić-Cezar & Zdeslav Jurić & Nur Assani & Branko Lalić, 2024. "Optimization of Fuel Consumption by Controlling the Load Distribution between Engines in an LNG Ship Electric Propulsion Plant," Energies, MDPI, vol. 17(15), pages 1-21, July.
    12. Liu, Jie & Wang, Junle & Zhao, Hongbo, 2018. "Optimization of the injection parameters and combustion chamber geometries of a diesel/natural gas RCCI engine," Energy, Elsevier, vol. 164(C), pages 837-852.
    13. Janusz Chojnowski & Mirosław Karczewski, 2022. "Influence of the Working Parameters of the Chassis Dynamometer on the Assessment of Tuning of Dual-Fuel Systems," Energies, MDPI, vol. 15(13), pages 1-18, July.
    14. Najafi, Bahman & Akbarian, Eivaz & Lashkarpour, S. Mehdi & Aghbashlo, Mortaza & Ghaziaskar, Hassan S. & Tabatabaei, Meisam, 2019. "Modeling of a dual fueled diesel engine operated by a novel fuel containing glycerol triacetate additive and biodiesel using artificial neural network tuned by genetic algorithm to reduce engine emiss," Energy, Elsevier, vol. 168(C), pages 1128-1137.
    15. Abu-Jrai, Ahmad M. & Al-Muhtaseb, Ala'a H. & Hasan, Ahmad O., 2017. "Combustion, performance, and selective catalytic reduction of NOx for a diesel engine operated with combined tri fuel (H2, CH4, and conventional diesel)," Energy, Elsevier, vol. 119(C), pages 901-910.
    16. Han, Zhiqiang & Li, Bolun & Tian, Wei & Xia, Qi & Leng, Songpeng, 2019. "Influence of coupling action of oxygenated fuel and gas circuit oxygen on hydrocarbons formation in diesel engine," Energy, Elsevier, vol. 173(C), pages 196-206.
    17. Wei Tian & Yunlu Chu & Zhiqiang Han & Xiang Wang & Wenbin Yu & Xueshun Wu, 2019. "Experimental Study of the Effect of Intake Oxygen Concentration on Engine Combustion Process and Hydrocarbon Emissions with N-Butanol-Diesel Blended Fuel," Energies, MDPI, vol. 12(7), pages 1-17, April.
    18. Hussein A. Mahmood & Nor Mariah. Adam & B. B. Sahari & S. U. Masuri, 2017. "New Design of a CNG-H 2 -AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study," Energies, MDPI, vol. 10(9), pages 1-27, September.
    19. Wu, Horng-Wen & Fan, Chen-Ming & He, Jian-Yi & Hsu, Tzu-Ting, 2017. "Optimal factors estimation for diesel/methanol engines changing methanol injection timing and inlet air temperature," Energy, Elsevier, vol. 141(C), pages 1819-1828.
    20. T. M. Yunus Khan, 2020. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines," Energies, MDPI, vol. 13(17), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:1130-1137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.