Steam Cavity Expansion Model for Steam Flooding in Deep Heavy Oil Reservoirs
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Pang, Zhanxi & Wang, Luting & Yin, Fanghao & Lyu, Xiaocong, 2021. "Steam chamber expanding processes and bottom water invading characteristics during steam flooding in heavy oil reservoirs," Energy, Elsevier, vol. 234(C).
- Khansari, Zeinab & Kapadia, Punitkumar & Mahinpey, Nader & Gates, Ian D., 2014. "A new reaction model for low temperature oxidation of heavy oil: Experiments and numerical modeling," Energy, Elsevier, vol. 64(C), pages 419-428.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sun, Fengrui & Yao, Yuedong & Chen, Mingqiang & Li, Xiangfang & Zhao, Lin & Meng, Ye & Sun, Zheng & Zhang, Tao & Feng, Dong, 2017. "Performance analysis of superheated steam injection for heavy oil recovery and modeling of wellbore heat efficiency," Energy, Elsevier, vol. 125(C), pages 795-804.
- Wang, Gang & Xie, Shuliang & Huang, Qiming & Wang, Enmao & Wang, Shuxin, 2023. "Study on the performances of fluorescent tracers for the wetting area detection of coal seam water injection," Energy, Elsevier, vol. 263(PE).
- Yang, Junyu & Xu, Qianghui & Jiang, Hang & Shi, Lin, 2021. "Reaction model of low asphaltene heavy oil from ramped temperature oxidation experimental analyses and numerical simulations," Energy, Elsevier, vol. 219(C).
- Zhao, Shuai & Pu, Wanfen & Peng, Xiaoqiang & Zhang, Jizhou & Ren, Hao, 2021. "Low-temperature oxidation of heavy crude oil characterized by TG, DSC, GC-MS, and negative ion ESI FT-ICR MS," Energy, Elsevier, vol. 214(C).
- Wang, Dechao & Jin, Lijun & Li, Yang & Yao, Demeng & Wang, Jiaofei & Hu, Haoquan, 2018. "Upgrading of vacuum residue with chemical looping partial oxidation over Ce doped Fe2O3," Energy, Elsevier, vol. 162(C), pages 542-553.
- Zhang, Fengming & Xu, Chunyan & Zhang, Yong & Chen, Shouyan & Chen, Guifang & Ma, Chunyuan, 2014. "Experimental study on the operating characteristics of an inner preheating transpiring wall reactor for supercritical water oxidation: Temperature profiles and product properties," Energy, Elsevier, vol. 66(C), pages 577-587.
- Du, Liping & Li, Binfei & Ji, Yanmin & Gai, Pingyuan & Lu, Teng & Li, Boliang & Wang, Jian, 2023. "A novel strategy to improve steam heat utilization and reduce carbon emissions during heavy oil development," Energy, Elsevier, vol. 266(C).
- Yong Huang & Wulin Xiao & Sen Chen & Boliang Li & Liping Du & Binfei Li, 2022. "A Study on the Adaptability of Nonhydrocarbon Gas-Assisted Steam Flooding to the Development of Heavy Oil Reservoirs," Energies, MDPI, vol. 15(13), pages 1-15, June.
- Gu, Hao & Cheng, Linsong & Huang, Shijun & Du, Baojian & Hu, Changhao, 2014. "Prediction of thermophysical properties of saturated steam and wellbore heat losses in concentric dual-tubing steam injection wells," Energy, Elsevier, vol. 75(C), pages 419-429.
- Sun, Fengrui & Li, Chunlan & Cheng, Linsong & Huang, Shijun & Zou, Ming & Sun, Qun & Wu, Xiaojun, 2017. "Production performance analysis of heavy oil recovery by cyclic superheated steam stimulation," Energy, Elsevier, vol. 121(C), pages 356-371.
- Chen, Hao & Liu, Xiliang & Jia, Ninghong & Tian, Xiaofeng & Duncan, Ian & Yang, Ran & Yang, Shenglai, 2020. "The impact of the oil character and quartz sands on the thermal behavior and kinetics of crude oil," Energy, Elsevier, vol. 210(C).
- Li, Xiaoyu & Sun, Xiaofei & Cai, Jiaming & Zhang, Qingquan & Pan, Xianggang & Zhang, Yanyu, 2023. "Experimental investigation on supercritical multi-thermal fluid flooding using a novel 2-dimensional model," Energy, Elsevier, vol. 283(C).
- Ling, Zhongqian & Zhou, Hao & Ren, Tao, 2015. "Effect of the flue gas recirculation supply location on the heavy oil combustion and NOx emission characteristics within a pilot furnace fired by a swirl burner," Energy, Elsevier, vol. 91(C), pages 110-116.
- Zhao, Shuai & Pu, Wanfen & Jiang, Qi & Yuan, Chengdong & Varfolomeev, Mikhail A. & Sudakov, Vladislav, 2023. "Investigation into the key factors influencing the establishment and propagation of combustion front in ultra-deep high-temperature heavy oil reservoirs," Energy, Elsevier, vol. 283(C).
- Xu, Shaotao & Lü, Xiaoshu & Sun, Youhong & Guo, Wei & Li, Qiang & Liu, Lang & Kang, Shijie & Deng, Sunhua, 2023. "Optimization of temperature parameters for the autothermic pyrolysis in-situ conversion process of oil shale," Energy, Elsevier, vol. 264(C).
More about this item
Keywords
deep heavy oil reservoir; vertical well steam flooding; steam cavity expansion model; wellbore heat loss; heat energy loss;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4816-:d:853239. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.