IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4776-d851532.html
   My bibliography  Save this article

Electricity Production and Consumption Perspectives in the Opinion of the Youth of South-Eastern Poland

Author

Listed:
  • Marian Woźniak

    (Department of Economics, The Faculty of Management, Rzeszów University of Technology, 12 Powstańców Warszawy Street, 35-959 Rzeszów, Poland)

  • Krzysztof Kud

    (Department of Enterprise, Management and Eco-Innovation, The Faculty of Management, Rzeszów University of Technology, 12 Powstańców Warszawy Street, 35-959 Rzeszów, Poland)

  • Aleksandra Badora

    (Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland)

  • Leszek Woźniak

    (Department of Enterprise, Management and Eco-Innovation, The Faculty of Management, Rzeszów University of Technology, 12 Powstańców Warszawy Street, 35-959 Rzeszów, Poland)

Abstract

In Poland, in 2021, an increase in demand for electricity was recorded, and hard coal and lignite power plants still had a dominant share in its production. Another source of electricity was renewable energy sources (RES), mainly wind farms. Young people in Poland are aware that electricity is not only its production, but also consumption in households. Therefore, it is also essential to properly educate young people, aiming at a cost-effective, sustainable lifestyle, in relation to electricity consumption. The article presents the current state of the electricity generation sector in Poland along with the proposed changes in this respect, in particular in terms of the development prospects for the use of renewable energy sources and the influence of government administration on the production and consumption of electricity. The aim of this research was to broaden the knowledge of young people’s opinions on energy production and consumption. The research results can be used to create long-term directions of energy policy and to build a social attitude of sustainable energy consumption in Poland. The research was non-probabilistic, based on questionnaires, using the CAWI (Computer Assisted Web Interview) technique. The questionnaire was conducted in 2021, and the analysis was made on the basis of 741 correctly completed research questionnaires. The results of the research confirmed the research hypotheses—that the surveyed youth see the need to reduce consumption as a way to counteract climate change and excessive energy consumption. They also expect government support in the energy transformation in Poland, based on a diversified scenario, using both renewable energy sources (RES) and nuclear energy.

Suggested Citation

  • Marian Woźniak & Krzysztof Kud & Aleksandra Badora & Leszek Woźniak, 2022. "Electricity Production and Consumption Perspectives in the Opinion of the Youth of South-Eastern Poland," Energies, MDPI, vol. 15(13), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4776-:d:851532
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4776/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4776/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    2. Lidia Gawlik & Eugeniusz Mokrzycki, 2019. "Changes in the Structure of Electricity Generation in Poland in View of the EU Climate Package," Energies, MDPI, vol. 12(17), pages 1-19, August.
    3. Nathan J. Cook & Tara Grillos & Krister P. Andersson, 2019. "Gender quotas increase the equality and effectiveness of climate policy interventions," Nature Climate Change, Nature, vol. 9(4), pages 330-334, April.
    4. John Bongaarts, 2016. "Development: Slow down population growth," Nature, Nature, vol. 530(7591), pages 409-412, February.
    5. Maarten Wolsink, 2018. "Co-production in distributed generation: renewable energy and creating space for fitting infrastructure within landscapes," Landscape Research, Taylor & Francis Journals, vol. 43(4), pages 542-561, May.
    6. Elias Ganivet, 2020. "Growth in human population and consumption both need to be addressed to reach an ecologically sustainable future," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 4979-4998, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Energy Behaviors of Prosumers in Example of Polish Households," Energies, MDPI, vol. 16(7), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elias Ganivet, 2020. "Growth in human population and consumption both need to be addressed to reach an ecologically sustainable future," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 4979-4998, August.
    2. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    5. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Muhammad Amir Raza & Muhammad Mohsin Aman & Altaf Hussain Rajpar & Mohamed Bashir Ali Bashir & Touqeer Ahmed Jumani, 2022. "Towards Achieving 100% Renewable Energy Supply for Sustainable Climate Change in Pakistan," Sustainability, MDPI, vol. 14(24), pages 1-23, December.
    7. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    8. Collins, Seán & Deane, J.P. & Ó Gallachóir, Brian, 2017. "Adding value to EU energy policy analysis using a multi-model approach with an EU-28 electricity dispatch model," Energy, Elsevier, vol. 130(C), pages 433-447.
    9. Stephan Kigle & Michael Ebner & Andrej Guminski, 2022. "Greenhouse Gas Abatement in EUROPE—A Scenario-Based, Bottom-Up Analysis Showing the Effect of Deep Emission Mitigation on the European Energy System," Energies, MDPI, vol. 15(4), pages 1-18, February.
    10. Piotr Gradziuk & Aleksandra Siudek & Anna M. Klepacka & Wojciech J. Florkowski & Anna Trocewicz & Iryna Skorokhod, 2022. "Heat Pump Installation in Public Buildings: Savings and Environmental Benefits in Underserved Rural Areas," Energies, MDPI, vol. 15(21), pages 1-16, October.
    11. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    12. Katarzyna Chudy-Laskowska & Tomasz Pisula, 2022. "An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation," Energies, MDPI, vol. 15(19), pages 1-23, October.
    13. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    14. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    15. Tozzi, Peter & Jo, Jin Ho, 2017. "A comparative analysis of renewable energy simulation tools: Performance simulation model vs. system optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 390-398.
    16. Kim, Yeong Jae & Wilson, Charlie, 2019. "Analysing energy innovation portfolios from a systemic perspective," Energy Policy, Elsevier, vol. 134(C).
    17. Russell, Aaron & Bingaman, Samantha & Garcia, Hannah-Marie, 2021. "Threading a moving needle: The spatial dimensions characterizing US offshore wind policy drivers," Energy Policy, Elsevier, vol. 157(C).
    18. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    19. Rajvikram Madurai Elavarasan & G. M. Shafiullah & Nallapaneni Manoj Kumar & Sanjeevikumar Padmanaban, 2019. "A State-of-the-Art Review on the Drive of Renewables in Gujarat, State of India: Present Situation, Barriers and Future Initiatives," Energies, MDPI, vol. 13(1), pages 1-30, December.
    20. Veronika Varvařovská & Michaela Staňková, 2021. "Does the Involvement of "Green Energy" Increase the Productivity of Companies in the Production of the Electricity Sector?," European Journal of Business Science and Technology, Mendel University in Brno, Faculty of Business and Economics, vol. 7(2), pages 152-164.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4776-:d:851532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.