IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4442-d841982.html
   My bibliography  Save this article

Experimental Study on Propagation Characteristics of Kerosene/Air RDE with Different Diameters

Author

Listed:
  • Shida Xu

    (Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi’an 710038, China)

  • Feilong Song

    (Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi’an 710038, China)

  • Jianping Zhou

    (Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi’an 710038, China)

  • Xingkui Yang

    (Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi’an 710038, China)

  • Peng Cheng

    (Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi’an 710038, China)

Abstract

A series of experimental tests were carried out in order to study the propagation characteristics of a liquid kerosene rotating detonation engine (RDE) with different diameters. Distinguished characteristics of spatial and temporal instability were found in the large-scale RDE due to the uneven circumferential distribution of kerosene supply pressure. As for the two counter-waves detonation system, the 500 mm-diameter RDE maintains a higher detonation wave velocity due to its longer injection recovery time. However, the 220 mm-diameter RDE can obtain a larger equivalence ratio operation range, higher specific thrust, and higher specific impulse. In addition, compared with the deflagration combustion, the detonation combustion has higher chamber pressure and thrust under the same operational conditions.

Suggested Citation

  • Shida Xu & Feilong Song & Jianping Zhou & Xingkui Yang & Peng Cheng, 2022. "Experimental Study on Propagation Characteristics of Kerosene/Air RDE with Different Diameters," Energies, MDPI, vol. 15(12), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4442-:d:841982
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4442/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4442/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan Kindracki & Krzysztof Wacko & Przemysław Woźniak & Stanisław Siatkowski & Łukasz Mężyk, 2020. "Influence of Gaseous Hydrogen Addition on Initiation of Rotating Detonation in Liquid Fuel–Air Mixtures," Energies, MDPI, vol. 13(19), pages 1-16, September.
    2. Wu, Yuwen & Zheng, Quan & Weng, Chunsheng, 2018. "An experimental study on the detonation transmission behaviours in acetylene-oxygen-argon mixtures," Energy, Elsevier, vol. 143(C), pages 554-561.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergey M. Frolov & Igor O. Shamshin & Maxim V. Kazachenko & Viktor S. Aksenov & Igor V. Bilera & Vladislav S. Ivanov & Valerii I. Zvegintsev, 2021. "Polyethylene Pyrolysis Products: Their Detonability in Air and Applicability to Solid-Fuel Detonation Ramjets," Energies, MDPI, vol. 14(4), pages 1-18, February.
    2. Liu, Xinghua & Ma, Yue & Li, Shuyuan & Yan, Hua & Wang, Daxi & Luo, Yongfeng, 2019. "Study of the reaction mechanism of aluminum based composite fuel and chlorine trifluoride oxide," Energy, Elsevier, vol. 168(C), pages 393-399.
    3. Yuxuan Zhao & Enhua Wang & Zhicheng Shi, 2022. "Numerical Investigation of the Ignition Delay Time of Kerosene Premixed Combustion in an SI Engine," Energies, MDPI, vol. 15(5), pages 1-15, February.
    4. Liu, Lijuan & Zhang, Qi, 2019. "Flame range and energy output in two-phase propylene oxide/air mixtures beyond the original premixed zone," Energy, Elsevier, vol. 171(C), pages 666-677.
    5. Sun, Xuxu & Lu, Shouxiang, 2020. "Effect of obstacle thickness on the propagation mechanisms of a detonation wave," Energy, Elsevier, vol. 198(C).
    6. Yanliang Chen & Xiangyang Liu & Jianping Wang, 2021. "Effects of Reversed Shock Waves on Operation Mode in H 2 /O 2 Rotating Detonation Chambers," Energies, MDPI, vol. 14(24), pages 1-14, December.
    7. Wang, Wentao & Cheng, Yangfan & Wang, Rui & Wang, Hao & Wang, Quan & Liu, Rong & Ma, Honghao, 2022. "Flame behaviors and overpressure characteristics of the unconfined acetylene-air deflagration," Energy, Elsevier, vol. 246(C).
    8. Zhang, Qibin & Wang, Ke & Dong, Rongxiao & Fan, Wei & Lu, Wei & Wang, Yongjia, 2019. "Experimental research on propulsive performance of the pulse detonation rocket engine with a fluidic nozzle," Energy, Elsevier, vol. 166(C), pages 1267-1275.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4442-:d:841982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.