Effect of obstacle thickness on the propagation mechanisms of a detonation wave
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.117186
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wu, Yuwen & Zheng, Quan & Weng, Chunsheng, 2018. "An experimental study on the detonation transmission behaviours in acetylene-oxygen-argon mixtures," Energy, Elsevier, vol. 143(C), pages 554-561.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wenhao Tan & Longxi Zheng & Jie Lu & Lingyi Wang & Daoen Zhou, 2022. "Experimental Investigations on Detonation Initiation Characteristics of a Liquid-Fueled Pulse Detonation Combustor at Different Inlet Air Temperatures," Energies, MDPI, vol. 15(23), pages 1-16, December.
- Xiangzhou Feng & Xiqiao Huang, 2022. "Influence of Variable Blocking Ratio on DDT Process," Energies, MDPI, vol. 15(20), pages 1-17, October.
- Huadao Xing & Runze Yu & Guangan Xu & Xiaodong Li & Yanyu Qiu & Derong Wang & Bin Li & Lifeng Xie, 2022. "Theoretical and Experimental Investigation of Explosion Characteristics of Hydrogen Explosion in a Closed Vessel," Energies, MDPI, vol. 15(22), pages 1-14, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shida Xu & Feilong Song & Jianping Zhou & Xingkui Yang & Peng Cheng, 2022. "Experimental Study on Propagation Characteristics of Kerosene/Air RDE with Different Diameters," Energies, MDPI, vol. 15(12), pages 1-13, June.
- Liu, Lijuan & Zhang, Qi, 2019. "Flame range and energy output in two-phase propylene oxide/air mixtures beyond the original premixed zone," Energy, Elsevier, vol. 171(C), pages 666-677.
- Wang, Wentao & Cheng, Yangfan & Wang, Rui & Wang, Hao & Wang, Quan & Liu, Rong & Ma, Honghao, 2022. "Flame behaviors and overpressure characteristics of the unconfined acetylene-air deflagration," Energy, Elsevier, vol. 246(C).
- Zhang, Qibin & Wang, Ke & Dong, Rongxiao & Fan, Wei & Lu, Wei & Wang, Yongjia, 2019. "Experimental research on propulsive performance of the pulse detonation rocket engine with a fluidic nozzle," Energy, Elsevier, vol. 166(C), pages 1267-1275.
- Liu, Xinghua & Ma, Yue & Li, Shuyuan & Yan, Hua & Wang, Daxi & Luo, Yongfeng, 2019. "Study of the reaction mechanism of aluminum based composite fuel and chlorine trifluoride oxide," Energy, Elsevier, vol. 168(C), pages 393-399.
More about this item
Keywords
Plate thickness; Detonation; Perturbation; Ignition mechanisms; Critical condition;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:198:y:2020:i:c:s0360544220302930. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.