IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4394-d840467.html
   My bibliography  Save this article

An n th Harmonic Current Suppression Method Based on the Impulse Current PWM Technique for a Multi-Phase Permanent Magnet Synchronous Motor Fed with a Current Source Inverter

Author

Listed:
  • Chao Chen

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

  • Zhen Chen

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

  • Congzhe Gao

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

  • Jing Zhao

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

  • Xiangdong Liu

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

  • Xiaoyong Sun

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

Abstract

Among the existing harmonic current suppression methods, it is difficult and complicated to suppress any n th harmonic current accurately for multi-phase permanent magnet synchronous motors (PMSMs). To solve this problem, this paper takes a five-phase dual-rotor PMSM fed with a current source inverter (CSI) as an example, and proposes an n th harmonic current suppression method based on the impulse current PWM algorithm. Firstly, the analysis is conducted and presented for the n th harmonic current in the m th harmonic space. Then, based on the Sliding Discrete Fourier Transformation (SDFT), a low-pass filter (LPF) named SDFT-LPF is designed. Additionally, the impulse current PWM technique for the five-phase CSI is realized. In this paper, the experiments have confirmed that the SDFT-LPF has good filter performance. Compared with the SVPWM, the impulse current PWM technique has the same DC-link current utilization rate, but it is easier to implement. Moreover, the proposed harmonic current control method can accurately control any n th harmonic current without changing the PWM technique, which has significantly reduced the complexity of the harmonic current control. Additionally, the proposed scheme is easy to implement and can be directly extended to the multiple harmonic current’s control.

Suggested Citation

  • Chao Chen & Zhen Chen & Congzhe Gao & Jing Zhao & Xiangdong Liu & Xiaoyong Sun, 2022. "An n th Harmonic Current Suppression Method Based on the Impulse Current PWM Technique for a Multi-Phase Permanent Magnet Synchronous Motor Fed with a Current Source Inverter," Energies, MDPI, vol. 15(12), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4394-:d:840467
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4394/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4394/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamidreza Heidari & Anton Rassõlkin & Toomas Vaimann & Ants Kallaste & Asghar Taheri & Mohammad Hosein Holakooie & Anouar Belahcen, 2019. "A Novel Vector Control Strategy for a Six-Phase Induction Motor with Low Torque Ripples and Harmonic Currents," Energies, MDPI, vol. 12(6), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamidreza Heidari & Anton Rassõlkin & Ants Kallaste & Toomas Vaimann & Ekaterina Andriushchenko & Anouar Belahcen & Dmitry V. Lukichev, 2021. "A Review of Synchronous Reluctance Motor-Drive Advancements," Sustainability, MDPI, vol. 13(2), pages 1-37, January.
    2. Habib Benbouhenni & Nicu Bizon, 2021. "Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    3. Mohamed I. Abdelwanis & Essam M. Rashad & Ibrahim B. M. Taha & Fathalla F. Selim, 2021. "Implementation and Control of Six-Phase Induction Motor Driven by a Three-Phase Supply," Energies, MDPI, vol. 14(22), pages 1-16, November.
    4. Hamidreza Heidari & Anton Rassõlkin & Mohammad Hosein Holakooie & Toomas Vaimann & Ants Kallaste & Anouar Belahcen & Dmitry V. Lukichev, 2020. "A Parallel Estimation System of Stator Resistance and Rotor Speed for Active Disturbance Rejection Control of Six-Phase Induction Motor," Energies, MDPI, vol. 13(5), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4394-:d:840467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.