IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4113-d831035.html
   My bibliography  Save this article

Space-Time Conglomerates Analysis of the Forest-Based Power Plants in Brazil (2000–2019)

Author

Listed:
  • Luiz Moreira Coelho Junior

    (Department of Renewable Energy Engineering, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil)

  • Edvaldo Pereira Santos Júnior

    (Master, Renewable Energy Graduate Program (PPGER), Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil)

Abstract

Forest based power plants are alternatives in the diversification of domestic energy supply in Brazil, given the growing demand for electricity in recent decades. Evidences of space-time clusters contribute to the understanding of regional development associated with correlated activity. Therefore, this paper analyzed the space-time conglomerates for Brazilian forest-based power plants, from 2000 to 2019. The data used were from the Generation Information System of the National Electric Energy Agency (ANEEL)-SIGA. It detected the existence of clusters by means of scan statistics via space-time permutation, considering the high level of conglomeration. The results show the Center-South region of Brazil with the highest concentration of conglomerates, with black liquor and forest residues being the most used energy resources. The clusters with the highest installed power were in the early 2010s, with the black liquor plants. The regions with the formation of fast-growing forest plantations promoted the existence of conglomerates associated with the pulp and paper and steel industry complexes. It is concluded that there was a conglomeration of forest power plants in the central-south region of Brazil, in which they help in decision-making and guidance of public policies for forestry projects for energy.

Suggested Citation

  • Luiz Moreira Coelho Junior & Edvaldo Pereira Santos Júnior, 2022. "Space-Time Conglomerates Analysis of the Forest-Based Power Plants in Brazil (2000–2019)," Energies, MDPI, vol. 15(11), pages 1-12, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4113-:d:831035
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rodrigues da Silva, Rafael & Mathias, Flavio Roberto de Carvalho & Bajay, Sergio Valdir, 2018. "Potential energy efficiency improvements for the Brazilian iron and steel industry: Fuel and electricity conservation supply curves for integrated steel mills," Energy, Elsevier, vol. 153(C), pages 816-824.
    2. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2010. "Sustainability considerations for electricity generation from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1419-1427, June.
    3. Deboni, Tamires Liza & Simioni, Flávio José & Brand, Martha Andreia & Lopes, Gisele Paim, 2019. "Evolution of the quality of forest biomass for energy generation in a cogeneration plant," Renewable Energy, Elsevier, vol. 135(C), pages 1291-1302.
    4. Ebers Broughel, Anna, 2019. "Impact of state policies on generating capacity for production of electricity and combined heat and power from forest biomass in the United States," Renewable Energy, Elsevier, vol. 134(C), pages 1163-1172.
    5. Nunes, L.J.R. & Causer, T.P. & Ciolkosz, D., 2020. "Biomass for energy: A review on supply chain management models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    6. de Melo, Conrado Augustus & Jannuzzi, Gilberto de Martino & Bajay, Sergio Valdir, 2016. "Nonconventional renewable energy governance in Brazil: Lessons to learn from the German experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 222-234.
    7. Nishiguchi, Sho & Tabata, Tomohiro, 2016. "Assessment of social, economic, and environmental aspects of woody biomass energy utilization: Direct burning and wood pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1279-1286.
    8. Tolmasquim, Maurício T. & de Barros Correia, Tiago & Addas Porto, Natália & Kruger, Wikus, 2021. "Electricity market design and renewable energy auctions: The case of Brazil," Energy Policy, Elsevier, vol. 158(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santos Júnior, Edvaldo Pereira & Silva, Magno Vamberto Batista da & Simioni, Flávio José & Rotella Junior, Paulo & Menezes, Rômulo Simões Cezar & Coelho Junior, Luiz Moreira, 2022. "Location and concentration of the forest bioelectricity supply in Brazil: A space-time analysis," Renewable Energy, Elsevier, vol. 199(C), pages 710-719.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Santos Júnior, Edvaldo Pereira & Silva, Magno Vamberto Batista da & Simioni, Flávio José & Rotella Junior, Paulo & Menezes, Rômulo Simões Cezar & Coelho Junior, Luiz Moreira, 2022. "Location and concentration of the forest bioelectricity supply in Brazil: A space-time analysis," Renewable Energy, Elsevier, vol. 199(C), pages 710-719.
    3. Sebestyén, Viktor, 2021. "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Alessio Ilari & Daniele Duca & Kofi Armah Boakye-Yiadom & Thomas Gasperini & Giuseppe Toscano, 2022. "Carbon Footprint and Feedstock Quality of a Real Biomass Power Plant Fed with Forestry and Agricultural Residues," Resources, MDPI, vol. 11(2), pages 1-20, January.
    5. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    6. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    7. Basile, Flavia & Pilotti, Lorenzo & Ugolini, Marco & Lozza, Giovanni & Manzolini, Giampaolo, 2022. "Supply chain optimization and GHG emissions in biofuel production from forestry residues in Sweden," Renewable Energy, Elsevier, vol. 196(C), pages 405-421.
    8. Salehi-Amiri, Amirhossein & Zahedi, Ali & Akbapour, Navid & Hajiaghaei-Keshteli, Mostafa, 2021. "Designing a sustainable closed-loop supply chain network for walnut industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Ana Werlang & Gabriel Cunha & João Bastos & Juliana Serra & Bruno Barbosa & Luiz Barroso, 2021. "Reliability Metrics for Generation Planning and the Role of Regulation in the Energy Transition: Case Studies of Brazil and Mexico," Energies, MDPI, vol. 14(21), pages 1-27, November.
    10. Giulio Allesina & Simone Pedrazzi, 2021. "Barriers to Success: A Technical Review on the Limits and Possible Future Roles of Small Scale Gasifiers," Energies, MDPI, vol. 14(20), pages 1-23, October.
    11. Gucciardi Garcez, Catherine, 2017. "Distributed electricity generation in Brazil: An analysis of policy context, design and impact," Utilities Policy, Elsevier, vol. 49(C), pages 104-115.
    12. Liu, Liwei & Ye, Junhong & Zhao, Yufei & Zhao, Erdong, 2015. "The plight of the biomass power generation industry in China – A supply chain risk perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 680-692.
    13. Liu, Yang & Zhang, Congrui & Xu, Xiaochuan & Ge, Yongxiang & Ren, Gaofeng, 2022. "Assessment of energy conservation potential and cost in open-pit metal mines: Bottom-up approach integrated energy conservation supply curve and ultimate pit limit," Energy Policy, Elsevier, vol. 163(C).
    14. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    15. Chihiro Kayo & Ryu Noda, 2018. "Climate Change Mitigation Potential of Wood Use in Civil Engineering in Japan Based on Life-Cycle Assessment," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    16. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    17. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Shamim, Tariq & Domenighini, Piergiovanni & Cotana, Franco & Wang, Jinwen & Fantozzi, Francesco & Bianchi, Francesco, 2023. "Transition toward net zero emissions - Integration and optimization of renewable energy sources: Solar, hydro, and biomass with the local grid station in central Italy," Renewable Energy, Elsevier, vol. 207(C), pages 672-686.
    18. Monteiro, Eliseu & Ismail, Tamer M. & Ramos, Ana & Abd El-Salam, M. & Brito, Paulo & Rouboa, Abel, 2018. "Experimental and modeling studies of Portuguese peach stone gasification on an autothermal bubbling fluidized bed pilot plant," Energy, Elsevier, vol. 142(C), pages 862-877.
    19. Eduardo Vicente Mendoza Merch n & Mois s David Vel squez Guti rrez & Diego Armando Medina Montenegro & Jos Ricardo Nu ez Alvarez & John William Grimaldo Guerrero, 2020. "An Analysis of Electricity Generation with Renewable Resources in Germany," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 361-367.
    20. Chia-Nan Wang & Hector Tibo & Duy Hung Duong, 2020. "Renewable Energy Utilization Analysis of Highly and Newly Industrialized Countries Using an Undesirable Output Model," Energies, MDPI, vol. 13(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4113-:d:831035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.