IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4033-d828477.html
   My bibliography  Save this article

Combustion Performance of Methane/Air in a Micro Combustor Embedded Hollow Hemispherical Slotted Bluff Body

Author

Listed:
  • Yunzhe Liao

    (School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
    The National University of Singapore (Suzhou) Research Institute, Suzhou 215100, China)

  • Chenghua Zhang

    (School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China)

  • Yanrong Chen

    (School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China)

  • Yunfei Yan

    (School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China)

Abstract

With the rapid development of micro-energy power systems, the performance of micro-combustors as key components is in urgent need of further improvement. Aimed at enhancing combustion performance, a hollow hemispherical bluff body was used to analyze the methane combustion process. In this paper, we exploited the detailed reaction mechanism of methane/air with a laminar finite-rate model; the numerical analysis of methane combustion in the micro-combustor was carried out by Ansys Fluent software. The combustion, flow and thermal characteristics of the micro-combustor embedded with a hollow hemisphere bluff body (MCEHB) and the micro combustor embedded with a slotted hollow hemisphere bluff body (MCESHB) are compared, and the effect of slot width ratio on the combustion characteristics and thermal performance is discussed in detail. The results showed that the bluff body slotting treatment is not only beneficial to improving the velocity and temperature distribution behind the bluff body but also can improve the conversion rate of methane, especially at high inlet velocities. However, the conversion rate of methane is also affected by the slot width. When the slot width ratio below 0.5, the slot width corresponding to the peak methane conversion increased with the inlet velocity. Moreover, the bluff body slotting treatment can improve the wall temperature distribution, meanwhile expanding the high temperature area at the inner wall, thereby reducing the wall temperature fluctuation in the rear part of the micro-combustor. In addition, the optimal slot width ratio B increases with the inlet velocity. Since the inlet velocity is lower than 0.5 m/s, the optimal slot width ratio B is in the range of 0.3–0.375. However, as the inlet velocity exceeds 0.5 m/s, the optimal slot width ratio B moves to the range of 0.375–0.553. Furthermore, both large and small slot widths bring obvious temperature fluctuations to the micro combustor; the uneven wall temperature distribution phenomenon is detrimental to working performance. Therefore, the slot width ratio B of 0.375 only brings slight temperature fluctuations, indicating this is an optimal slot width ratio that should be chosen. This work has reference value for optimizing the design of the bluff body structure and improving the combustion performance of methane in the micro combustor.

Suggested Citation

  • Yunzhe Liao & Chenghua Zhang & Yanrong Chen & Yunfei Yan, 2022. "Combustion Performance of Methane/Air in a Micro Combustor Embedded Hollow Hemispherical Slotted Bluff Body," Energies, MDPI, vol. 15(11), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4033-:d:828477
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4033/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4033/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Linhong & Yang, Guangyao & Fan, Aiwu, 2021. "Non-premixed combustion characteristics and thermal performance of a catalytic combustor for micro-thermophotovoltaic systems," Energy, Elsevier, vol. 214(C).
    2. Gao, Wei & Yan, Yunfei & Shen, Kaiming & Huang, Lujing & Zhao, Ting & Gao, Bo, 2022. "Combustion characteristic of premixed H2/air in the micro cavity combustor with guide vanes," Energy, Elsevier, vol. 239(PA).
    3. Yan, Yunfei & Wu, Gange & Huang, Weipeng & Zhang, Li & Li, Lixian & Yang, Zhongqing, 2019. "Numerical comparison study of methane catalytic combustion characteristic between newly proposed opposed counter-flow micro-combustor and the conventional ones," Energy, Elsevier, vol. 170(C), pages 403-410.
    4. Pan, Jianfeng & Zhang, Chenxin & Pan, Zhenhua & Wu, Di & Zhu, Yuejin & Lu, Qingbo & Zhang, Yi, 2020. "Investigation on the effect of bluff body ball on the combustion characteristics for methane/oxygen in micro combustor," Energy, Elsevier, vol. 190(C).
    5. Shirsat, V. & Gupta, A.K., 2011. "A review of progress in heat recirculating meso-scale combustors," Applied Energy, Elsevier, vol. 88(12), pages 4294-4309.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).
    2. Peng, Qingguo & Wu, Yifeng & E, Jiaqiang & Yang, Wenming & Xu, Hongpeng & Li, Zhenwei, 2019. "Combustion characteristics and thermal performance of premixed hydrogen-air in a two-rearward-step micro tube," Applied Energy, Elsevier, vol. 242(C), pages 424-438.
    3. E, Jiaqiang & Meng, Tian & Chen, Jingwei & Wu, Weiwei & Zhao, Xiaohuan & Zhang, Bin & Peng, Qingguo, 2021. "Effect analysis on performance enhancement of a hydrogen/air non-premixed micro combustor with sudden expansion and contraction structure," Energy, Elsevier, vol. 230(C).
    4. Zuo, Wei & Wang, Zijie & Li, Qingqing & Zhou, Kun & Huang, Yuhan, 2024. "Numerical investigations on the performance enhancement of a hydrogen-fueled micro planar combustor with finned bluff body for thermophotovoltaic applications," Energy, Elsevier, vol. 293(C).
    5. Zhuang Kang & Zhiwei Shi & Jiahao Ye & Xinghua Tian & Zhixin Huang & Hao Wang & Depeng Wei & Qingguo Peng & Yaojie Tu, 2023. "A Review of Micro Power System and Micro Combustion: Present Situation, Techniques and Prospects," Energies, MDPI, vol. 16(7), pages 1-28, April.
    6. Li, Linhong & Yang, Guangyao & Fan, Aiwu, 2021. "Non-premixed combustion characteristics and thermal performance of a catalytic combustor for micro-thermophotovoltaic systems," Energy, Elsevier, vol. 214(C).
    7. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    8. Qin, Mingyuan & Chew, Bee Teng & Yau, Yat Huang & Wang, Xinru & Wang, Chunqing & Luo, Xueqing & Li, Lei & Pan, Song, 2023. "Emergency heater based on gas-fired catalytic combustion infrared technology: Structure, evaluation and thermal response," Energy, Elsevier, vol. 274(C).
    9. Tan, Yan & E, Jiaqiang & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Li, Jintao, 2022. "Investigation on combustion characteristics and thermal performance of a three rearward-step structure micro combustor fueled by premixed hydrogen/air," Renewable Energy, Elsevier, vol. 186(C), pages 486-504.
    10. Sun, Bowen & Kang, Xin & Wang, Yu, 2020. "Numerical investigations on the methane-oxygen diffusion flame-street phenomena in a microchannel: Effects of wall temperatures, inflow rates and global equivalence ratios on flame behaviors and combu," Energy, Elsevier, vol. 207(C).
    11. Peng, Qingguo & Xie, Bo & Yang, Wenming & Tang, Shihao & Li, Zhenwei & Zhou, Peng & Luo, Ningkang, 2021. "Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic," Renewable Energy, Elsevier, vol. 174(C), pages 391-402.
    12. Mingfei Li & Jingjing Wang & Zhengpeng Chen & Xiuyang Qian & Chuanqi Sun & Di Gan & Kai Xiong & Mumin Rao & Chuangting Chen & Xi Li, 2024. "A Comprehensive Review of Thermal Management in Solid Oxide Fuel Cells: Focus on Burners, Heat Exchangers, and Strategies," Energies, MDPI, vol. 17(5), pages 1-30, February.
    13. Tang, Aikun & Deng, Jiang & Cai, Tao & Xu, Yiming & Pan, Jianfeng, 2017. "Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights," Applied Energy, Elsevier, vol. 203(C), pages 635-642.
    14. Vinay Sankar & Sreejith Sudarsanan & Sudipto Mukhopadhyay & Prabhu Selvaraj & Aravind Balakrishnan & Ratna Kishore Velamati, 2023. "Towards the Development of Miniature Scale Liquid Fuel Combustors for Power Generation Application—A Review," Energies, MDPI, vol. 16(10), pages 1-41, May.
    15. Jiaqiang, E. & Zuo, Wei & Liu, Xueling & Peng, Qingguo & Deng, Yuanwang & Zhu, Hao, 2016. "Effects of inlet pressure on wall temperature and exergy efficiency of the micro-cylindrical combustor with a step," Applied Energy, Elsevier, vol. 175(C), pages 337-345.
    16. Baigmohammadi, Mohammadreza & Tabejamaat, Sadegh & Zarvandi, Jalal, 2015. "Numerical study of the behavior of methane-hydrogen/air pre-mixed flame in a micro reactor equipped with catalytic segmented bluff body," Energy, Elsevier, vol. 85(C), pages 117-144.
    17. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Li, Shaobo & Li, Zhenwei & Xu, Hongpeng & Fu, Guang, 2021. "Effects of propane addition and burner scale on the combustion characteristics and working performance," Applied Energy, Elsevier, vol. 285(C).
    18. Xu, Jing & Cheng, Kunlin & Dang, Chaolei & Wang, Yilin & Liu, Zekuan & Qin, Jiang & Liu, Xiaoyong, 2023. "Performance comparison of liquid metal cooling system and regenerative cooling system in supersonic combustion ramjet engines," Energy, Elsevier, vol. 275(C).
    19. Fanciulli, C. & Abedi, H. & Merotto, L. & Dondè, R. & De Iuliis, S. & Passaretti, F., 2018. "Portable thermoelectric power generation based on catalytic combustor for low power electronic equipment," Applied Energy, Elsevier, vol. 215(C), pages 300-308.
    20. Xie, Bo & Peng, Qingguo & E, Jiaqiang & Tu, Yaojie & Wei, Jia & Tang, Shihao & Song, Yangyang & Fu, Guang, 2022. "Effects of CO addition and multi-factors optimization on hydrogen/air combustion characteristics and thermal performance based on grey relational analysis," Energy, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4033-:d:828477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.