IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p3985-d826397.html
   My bibliography  Save this article

Machine Learning for Solar Resource Assessment Using Satellite Images

Author

Listed:
  • Luis Eduardo Ordoñez Palacios

    (Escuela de Ingeniería de Sistemas y Computación (EISC), Facultad de Ingeniería, Universidad del Valle, Cali 760001, Colombia)

  • Víctor Bucheli Guerrero

    (Escuela de Ingeniería de Sistemas y Computación (EISC), Facultad de Ingeniería, Universidad del Valle, Cali 760001, Colombia)

  • Hugo Ordoñez

    (Departamento de Sistemas, Facultad de Electrónica y Telecomunicaciones, Universidad del Cauca, Popayán 190001, Colombia)

Abstract

Understanding solar energy has become crucial for the development of modern societies. For this reason, significant effort has been placed on building models of solar resource assessment. Here, we analyzed satellite imagery and solar radiation data of three years (2012, 2013, and 2014) to build seven predictive models of the solar energy obtained at different altitudes above sea level. The performance of four machine learning algorithms was evaluated using four evaluation metrics, MBE, R 2 , RMSE, and MAPE. Random Forest showed the best performance in the model with data obtained at altitudes below 800 m.a.s.l. The results achieved by the algorithm were: 4.89, 0.82, 107.25, and 41.08%, respectively. In general, the differences in the results of the machine learning algorithms in the different models were not very significant; however, the results provide evidence showing that the estimation of solar radiation from satellite images anywhere on the planet is feasible.

Suggested Citation

  • Luis Eduardo Ordoñez Palacios & Víctor Bucheli Guerrero & Hugo Ordoñez, 2022. "Machine Learning for Solar Resource Assessment Using Satellite Images," Energies, MDPI, vol. 15(11), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3985-:d:826397
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/3985/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/3985/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ajith, Meenu & Martínez-Ramón, Manel, 2021. "Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data," Applied Energy, Elsevier, vol. 294(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zoltan Varga & Ervin Racz, 2022. "Machine Learning Analysis on the Performance of Dye-Sensitized Solar Cell—Thermoelectric Generator Hybrid System," Energies, MDPI, vol. 15(19), pages 1-18, October.
    2. Jiandong Liu & Yanbo Shen & Guangsheng Zhou & De-Li Liu & Qiang Yu & Jun Du, 2023. "Calibrating the Ångström–Prescott Model with Solar Radiation Data Collected over Long and Short Periods of Time over the Tibetan Plateau," Energies, MDPI, vol. 16(20), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajith, Meenu & Martínez-Ramón, Manel, 2023. "Deep learning algorithms for very short term solar irradiance forecasting: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Cai, Qingsen & Luo, XingQi & Wang, Peng & Gao, Chunyang & Zhao, Peiyu, 2022. "Hybrid model-driven and data-driven control method based on machine learning algorithm in energy hub and application," Applied Energy, Elsevier, vol. 305(C).
    3. Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
    4. Liu, Jingxuan & Zang, Haixiang & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A Transformer-based multimodal-learning framework using sky images for ultra-short-term solar irradiance forecasting," Applied Energy, Elsevier, vol. 342(C).
    5. Acikgoz, Hakan, 2022. "A novel approach based on integration of convolutional neural networks and deep feature selection for short-term solar radiation forecasting," Applied Energy, Elsevier, vol. 305(C).
    6. Niu, Tong & Li, Jinkai & Wei, Wei & Yue, Hui, 2022. "A hybrid deep learning framework integrating feature selection and transfer learning for multi-step global horizontal irradiation forecasting," Applied Energy, Elsevier, vol. 326(C).
    7. Xinyu Yang & Ying Ji & Xiaoxia Wang & Menghan Niu & Shuijing Long & Jingchao Xie & Yuying Sun, 2023. "Simplified Method for Predicting Hourly Global Solar Radiation Using Extraterrestrial Radiation and Limited Weather Forecast Parameters," Energies, MDPI, vol. 16(7), pages 1-16, April.
    8. Chen, Shanlin & Li, Chengxi & Xie, Yuying & Li, Mengying, 2023. "Global and direct solar irradiance estimation using deep learning and selected spectral satellite images," Applied Energy, Elsevier, vol. 352(C).
    9. Zang, Haixiang & Jiang, Xin & Cheng, LiLin & Zhang, Fengchun & Wei, Zhinong & Sun, Guoqiang, 2022. "Combined empirical and machine learning modeling method for estimation of daily global solar radiation for general meteorological observation stations," Renewable Energy, Elsevier, vol. 195(C), pages 795-808.
    10. Paletta, Quentin & Hu, Anthony & Arbod, Guillaume & Lasenby, Joan, 2022. "ECLIPSE: Envisioning CLoud Induced Perturbations in Solar Energy," Applied Energy, Elsevier, vol. 326(C).
    11. Gao, Yuan & Hu, Zehuan & Shi, Shanrui & Chen, Wei-An & Liu, Mingzhe, 2024. "Adversarial discriminative domain adaptation for solar radiation prediction: A cross-regional study for zero-label transfer learning in Japan," Applied Energy, Elsevier, vol. 359(C).
    12. Qu, Jiaqi & Qian, Zheng & Pei, Yan & Wei, Lu & Zareipour, Hamidreza & Sun, Qiang, 2022. "An unsupervised hourly weather status pattern recognition and blending fitting model for PV system fault detection," Applied Energy, Elsevier, vol. 319(C).
    13. Nie, Yuhao & Li, Xiatong & Paletta, Quentin & Aragon, Max & Scott, Andea & Brandt, Adam, 2024. "Open-source sky image datasets for solar forecasting with deep learning: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    14. Liu, Jingxuan & Zang, Haixiang & Ding, Tao & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2023. "Harvesting spatiotemporal correlation from sky image sequence to improve ultra-short-term solar irradiance forecasting," Renewable Energy, Elsevier, vol. 209(C), pages 619-631.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3985-:d:826397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.