IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3731-d819219.html
   My bibliography  Save this article

Relevance of Optimized Low-Scale Green H 2 Systems in a French Context: Two Case Studies

Author

Listed:
  • Timothé Gronier

    (Advestis, 75008 Paris, France
    Universite de Pau et des Pays de l’Adour, E2S UPPA, LaTEP, Pau, France
    ADERA, 33608 Pessac, France)

  • William Maréchal

    (Advestis, 75008 Paris, France)

  • Stéphane Gibout

    (Universite de Pau et des Pays de l’Adour, E2S UPPA, LaTEP, Pau, France)

  • Christophe Geissler

    (Advestis, 75008 Paris, France)

Abstract

Hydrogen has been identified as a very promising vector for energy storage, especially for heavy mobility applications. For this reason, France is making significant investments in this field, and use cases need to be evaluated as they are sprouting. In this paper, the relevance of H 2 in two storage applications is studied: a domestic renewable electricity production system connected to the grid and a collective hydrogen production for the daily bus refill. The investigation consists of the sizing of the system and then the evaluation of its performance according to several criteria depending on case. Optimizations are made using Bayesian and gradient-based methods. Several variations around a central case are explored for both cases to give insights on the impact of the different parameters (location, pricing, objective, etc.) on the performance of the system.Our results show that domestic power-to-power applications (case 1) do not seem to be competitive with electrochemical storage. Meanwhile, without any subsidies or incentives, such configuration does not allow prosumers to save money (+16% spendings compared to non-equipped dwelling). It remains interesting when self-sufficiency is the main objective (up to 68% of energy is not exchanged). The power-to-gas application (case 2, central case), with a direct use of hydrogen for mobility, seems to be more relevant according to our case study, we could reach a production cost of green H 2 around 5 €/kg, similar to the 3–10 $/kg found in literature, for 182 houses involved. In both cases, H 2 follows a yearly cycle, charging in summer and discharging in winter (long term storage) due to low conversion efficiency.

Suggested Citation

  • Timothé Gronier & William Maréchal & Stéphane Gibout & Christophe Geissler, 2022. "Relevance of Optimized Low-Scale Green H 2 Systems in a French Context: Two Case Studies," Energies, MDPI, vol. 15(10), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3731-:d:819219
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stadler, Michael & Cardoso, Gonçalo & Mashayekh, Salman & Forget, Thibault & DeForest, Nicholas & Agarwal, Ankit & Schönbein, Anna, 2016. "Value streams in microgrids: A literature review," Applied Energy, Elsevier, vol. 162(C), pages 980-989.
    2. Lujano-Rojas, Juan M. & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2013. "Probabilistic modelling and analysis of stand-alone hybrid power systems," Energy, Elsevier, vol. 63(C), pages 19-27.
    3. Ludvik Viktorsson & Jukka Taneli Heinonen & Jon Bjorn Skulason & Runar Unnthorsson, 2017. "A Step towards the Hydrogen Economy—A Life Cycle Cost Analysis of A Hydrogen Refueling Station," Energies, MDPI, vol. 10(6), pages 1-15, May.
    4. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    5. Avril, S. & Arnaud, G. & Florentin, A. & Vinard, M., 2010. "Multi-objective optimization of batteries and hydrogen storage technologies for remote photovoltaic systems," Energy, Elsevier, vol. 35(12), pages 5300-5308.
    6. Sreedhar, I. & Kamani, Krutarth M. & Kamani, Bansi M. & Reddy, Benjaram M. & Venugopal, A., 2018. "A Bird's Eye view on process and engineering aspects of hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 838-860.
    7. Lorién Gracia & Pedro Casero & Cyril Bourasseau & Alexandre Chabert, 2018. "Use of Hydrogen in Off-Grid Locations, a Techno-Economic Assessment," Energies, MDPI, vol. 11(11), pages 1-16, November.
    8. Zakeri, Behnam & Cross, Samuel & Dodds, Paul.E. & Gissey, Giorgio Castagneto, 2021. "Policy options for enhancing economic profitability of residential solar photovoltaic with battery energy storage," Applied Energy, Elsevier, vol. 290(C).
    9. DeValeria, Michelle K. & Michaelides, Efstathios E. & Michaelides, Dimitrios N., 2020. "Energy and thermal storage in clusters of grid-independent buildings," Energy, Elsevier, vol. 190(C).
    10. van der Roest, Els & Snip, Laura & Fens, Theo & van Wijk, Ad, 2020. "Introducing Power-to-H3: Combining renewable electricity with heat, water and hydrogen production and storage in a neighbourhood," Applied Energy, Elsevier, vol. 257(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    2. Yuriy Zhukovskiy & Pavel Tsvetkov & Aleksandra Buldysko & Yana Malkova & Antonina Stoianova & Anastasia Koshenkova, 2021. "Scenario Modeling of Sustainable Development of Energy Supply in the Arctic," Resources, MDPI, vol. 10(12), pages 1-25, December.
    3. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    4. Zhang, Yue & Zhang, Qi & Farnoosh, Arash & Chen, Siyuan & Li, Yan, 2019. "GIS-Based Multi-Objective Particle Swarm Optimization of charging stations for electric vehicles," Energy, Elsevier, vol. 169(C), pages 844-853.
    5. Ushnik Mukherjee & Azadeh Maroufmashat & Apurva Narayan & Ali Elkamel & Michael Fowler, 2017. "A Stochastic Programming Approach for the Planning and Operation of a Power to Gas Energy Hub with Multiple Energy Recovery Pathways," Energies, MDPI, vol. 10(7), pages 1-27, June.
    6. Jiao, P.H. & Chen, J.J. & Cai, X. & Wang, L.L. & Zhao, Y.L. & Zhang, X.H. & Chen, W.G., 2021. "Joint active and reactive for allocation of renewable energy and energy storage under uncertain coupling," Applied Energy, Elsevier, vol. 302(C).
    7. Tubagus Aryandi Gunawan & Alessandro Singlitico & Paul Blount & James Burchill & James G. Carton & Rory F. D. Monaghan, 2020. "At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?," Energies, MDPI, vol. 13(7), pages 1-23, April.
    8. Zhu, Junpeng & Meng, Dexin & Dong, Xiaofeng & Fu, Zhixin & Yuan, Yue, 2023. "An integrated electricity - hydrogen market design for renewable-rich energy system considering mobile hydrogen storage," Renewable Energy, Elsevier, vol. 202(C), pages 961-972.
    9. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    10. Zhou, P. & Jin, R.Y. & Fan, L.W., 2016. "Reliability and economic evaluation of power system with renewables: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 537-547.
    11. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    12. Pratik Mochi & Kartik Pandya & Joao Soares & Zita Vale, 2023. "Optimizing Power Exchange Cost Considering Behavioral Intervention in Local Energy Community," Mathematics, MDPI, vol. 11(10), pages 1-15, May.
    13. Aouss Gabash & Pu Li, 2016. "On Variable Reverse Power Flow-Part II: An Electricity Market Model Considering Wind Station Size and Location," Energies, MDPI, vol. 9(4), pages 1-13, March.
    14. Sebastián Mantilla & Diogo M. F. Santos, 2022. "Green and Blue Hydrogen Production: An Overview in Colombia," Energies, MDPI, vol. 15(23), pages 1-21, November.
    15. Fuster-Palop, Enrique & Prades-Gil, Carlos & Masip, X. & Viana-Fons, Joan D. & Payá, Jorge, 2021. "Innovative regression-based methodology to assess the techno-economic performance of photovoltaic installations in urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Davide Coraci & Silvio Brandi & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Online Implementation of a Soft Actor-Critic Agent to Enhance Indoor Temperature Control and Energy Efficiency in Buildings," Energies, MDPI, vol. 14(4), pages 1-26, February.
    18. Eypasch, Martin & Schimpe, Michael & Kanwar, Aastha & Hartmann, Tobias & Herzog, Simon & Frank, Torsten & Hamacher, Thomas, 2017. "Model-based techno-economic evaluation of an electricity storage system based on Liquid Organic Hydrogen Carriers," Applied Energy, Elsevier, vol. 185(P1), pages 320-330.
    19. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    20. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3731-:d:819219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.