IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3662-d817279.html
   My bibliography  Save this article

Efficient Operations of Micro-Grids with Meshed Topology and Under Uncertainty through Exact Satisfaction of AC-PF, Droop Control and Tap-Changer Constraints

Author

Listed:
  • Mikhail A. Bragin

    (Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269, USA
    These authors contributed equally to this work.)

  • Bing Yan

    (Department of Electrical and Microelectronic Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
    These authors contributed equally to this work.)

  • Akash Kumar

    (Department of Electrical and Microelectronic Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA)

  • Nanpeng Yu

    (Department of Electrical and Computer Engineering, University of California, Riverside, CA 94143, USA)

  • Peng Zhang

    (Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA)

Abstract

Micro-grids’ operations offer local reliability; in the event of faults or low voltage/frequency events on the utility side, micro-grids can disconnect from the main grid and operate autonomously while providing a continued supply of power to local customers. With the ever-increasing penetration of renewable generation, however, operations of micro-grids become increasingly complicated because of the associated fluctuations of voltages. As a result, transformer taps are adjusted frequently, thereby leading to fast degradation of expensive tap-changer transformers. In the islanding mode, the difficulties also come from the drop in voltage and frequency upon disconnecting from the main grid. To appropriately model the above, non-linear AC power flow constraints are necessary. Computationally, the discrete nature of tap-changer operations and the stochasticity caused by renewables add two layers of difficulty on top of a complicated AC-OPF problem. To resolve the above computational difficulties, the main principles of the recently developed “ l 1 -proximal” Surrogate Lagrangian Relaxation are extended. Testing results based on the nine-bus system demonstrate the efficiency of the method to obtain the exact feasible solutions for micro-grid operations, thereby avoiding approximations inherent to existing methods; in particular, fast convergence of the method to feasible solutions is demonstrated. It is also demonstrated that through the optimization, the number of tap changes is drastically reduced, and the method is capable of efficiently handling networks with meshed topologies.

Suggested Citation

  • Mikhail A. Bragin & Bing Yan & Akash Kumar & Nanpeng Yu & Peng Zhang, 2022. "Efficient Operations of Micro-Grids with Meshed Topology and Under Uncertainty through Exact Satisfaction of AC-PF, Droop Control and Tap-Changer Constraints," Energies, MDPI, vol. 15(10), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3662-:d:817279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3662/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3662/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Guodong & Jiang, Tao & Ollis, Thomas B. & Zhang, Xiaohu & Tomsovic, Kevin, 2019. "Distributed energy management for community microgrids considering network operational constraints and building thermal dynamics," Applied Energy, Elsevier, vol. 239(C), pages 83-95.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bu, Yuntao & Yu, Hao & Ji, Haoran & Song, Guanyu & Xu, Jing & Li, Juan & Zhao, Jinli & Li, Peng, 2024. "Hybrid data-driven operation method for demand response of community integrated energy systems utilizing virtual and physical energy storage," Applied Energy, Elsevier, vol. 366(C).
    2. Guodong Liu & Maximiliano F. Ferrari & Thomas B. Ollis & Kevin Tomsovic, 2022. "An MILP-Based Distributed Energy Management for Coordination of Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-20, September.
    3. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    4. Wang, Cheng & Liu, Chuang & Lin, Yuzhang & Bi, Tianshu, 2020. "Day-ahead dispatch of integrated electric-heat systems considering weather-parameter-driven residential thermal demands," Energy, Elsevier, vol. 203(C).
    5. Angizeh, Farhad & Ghofrani, Ali & Zaidan, Esmat & Jafari, Mohsen A., 2022. "Adaptable scheduling of smart building communities with thermal mapping and demand flexibility," Applied Energy, Elsevier, vol. 310(C).
    6. Stennikov, Valery & Barakhtenko, Evgeny & Mayorov, Gleb & Sokolov, Dmitry & Zhou, Bin, 2022. "Coordinated management of centralized and distributed generation in an integrated energy system using a multi-agent approach," Applied Energy, Elsevier, vol. 309(C).
    7. Saad, Ahmed A. & Faddel, Samy & Mohammed, Osama, 2019. "A secured distributed control system for future interconnected smart grids," Applied Energy, Elsevier, vol. 243(C), pages 57-70.
    8. Guodong Liu & Maximiliano F. Ferrari & Thomas B. Ollis & Aditya Sundararajan & Mohammed Olama & Yang Chen, 2023. "Distributed Energy Management for Networked Microgrids with Hardware-in-the-Loop Validation," Energies, MDPI, vol. 16(7), pages 1-27, March.
    9. Zahra Fallahi & Gregor P. Henze, 2019. "Interactive Buildings: A Review," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
    10. Carlos Oliveira & Micael Simões & Leonardo Bitencourt & Tiago Soares & Manuel A. Matos, 2023. "Distributed Network-Constrained P2P Community-Based Market for Distribution Networks," Energies, MDPI, vol. 16(3), pages 1-16, February.
    11. Wei, Congying & Wu, Qiuwei & Xu, Jian & Sun, Yuanzhang & Jin, Xiaolong & Liao, Siyang & Yuan, Zhiyong & Yu, Li, 2020. "Distributed scheduling of smart buildings to smooth power fluctuations considering load rebound," Applied Energy, Elsevier, vol. 276(C).
    12. Luis Gomes & Filipe Sousa & Tiago Pinto & Zita Vale, 2019. "A Residential House Comparative Case Study Using Market Available Smart Plugs and EnAPlugs with Shared Knowledge," Energies, MDPI, vol. 12(9), pages 1-15, April.
    13. Guodong Liu & Zhi Li & Yaosuo Xue & Kevin Tomsovic, 2022. "Microgrid Assisted Design for Remote Areas," Energies, MDPI, vol. 15(10), pages 1-23, May.
    14. Álex Omar Topa Gavilema & José Domingo Álvarez & José Luis Torres Moreno & Manuel Pérez García, 2021. "Towards Optimal Management in Microgrids: An Overview," Energies, MDPI, vol. 14(16), pages 1-25, August.
    15. Meena, Nand K. & Yang, Jin & Zacharis, Evan, 2019. "Optimisation framework for the design and operation of open-market urban and remote community microgrids," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Zhou, Xiaoqian & Ai, Qian & Yousif, Muhammad, 2019. "Two kinds of decentralized robust economic dispatch framework combined distribution network and multi-microgrids," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Qiu, Haifeng & You, Fengqi, 2020. "Decentralized-distributed robust electric power scheduling for multi-microgrid systems," Applied Energy, Elsevier, vol. 269(C).
    18. Shaohao Xie & Fangguo Zhang & Huizhi Lin & Yangtong Tian, 2019. "A New Secure and Anonymous Metering Scheme for Smart Grid Communications," Energies, MDPI, vol. 12(24), pages 1-16, December.
    19. Salah K. ElSayed & Sattam Al Otaibi & Yasser Ahmed & Essam Hendawi & Nagy I. Elkalashy & Ayman Hoballah, 2021. "Probabilistic Modeling and Equilibrium Optimizer Solving for Energy Management of Renewable Micro-Grids Incorporating Storage Devices," Energies, MDPI, vol. 14(5), pages 1-24, March.
    20. Nawaz, Arshad & Zhou, Min & Wu, Jing & Long, Chengnian, 2022. "A comprehensive review on energy management, demand response, and coordination schemes utilization in multi-microgrids network," Applied Energy, Elsevier, vol. 323(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3662-:d:817279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.