IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3616-d816046.html
   My bibliography  Save this article

Natural Gas Conversion and Liquid/Solid Organic Waste Gasification by Ultra-Superheated Steam

Author

Listed:
  • Sergey M. Frolov

    (Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Department of Combustion and Explosion, 119991 Moscow, Russia)

  • Viktor A. Smetanyuk

    (Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Department of Combustion and Explosion, 119991 Moscow, Russia)

  • Ilias A. Sadykov

    (Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Department of Combustion and Explosion, 119991 Moscow, Russia)

  • Anton S. Silantiev

    (Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Department of Combustion and Explosion, 119991 Moscow, Russia)

  • Igor O. Shamshin

    (Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Department of Combustion and Explosion, 119991 Moscow, Russia)

  • Viktor S. Aksenov

    (Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Department of Combustion and Explosion, 119991 Moscow, Russia)

  • Konstantin A. Avdeev

    (Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Department of Combustion and Explosion, 119991 Moscow, Russia)

  • Fedor S. Frolov

    (Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Department of Combustion and Explosion, 119991 Moscow, Russia)

Abstract

The technology of a pulsed detonation gun for gasification of organic waste with ultra-superheated steam has been experimentally demonstrated for the first time. Experiments were performed on natural gas conversion as well as on the gasification of liquid (waste machine oil) and solid (wood sawdust) waste by hot detonation products of natural gas–oxygen mixture at a frequency of detonation pulses f = 1 Hz. Periodic release of detonation products to a 100 L flow reactor provided a time-averaged mean temperature and pressure in the reactor at about 1200 K and 0.1 MPa. It is shown that the technology of a pulsed detonation gun can provide complete (100%) natural gas conversion to syngas containing H 2 and CO with a H 2 /CO ratio of 1.25. During the gasification of liquid and solid wastes, the total volume fraction of combustible gases (H 2 , CO, and CH 4 ) in the product syngas was 80 and 65% with H 2 /CO ratios of 0.8 and 0.5, respectively. Comparison of the experiments on natural gas conversion and liquid/solid organic waste gasification under the same conditions at f = 1 Hz showed that the composition of the product syngas in terms of H 2 and CO content almost did not depend on the type of used feedstock. The estimated ideal energy gain defined as the ratio of the total energy of product syngas to the energy spent in its production from dry wood sawdust is about 4.6, i.e., the pulsed detonation technology of biomass gasification is economically very attractive.

Suggested Citation

  • Sergey M. Frolov & Viktor A. Smetanyuk & Ilias A. Sadykov & Anton S. Silantiev & Igor O. Shamshin & Viktor S. Aksenov & Konstantin A. Avdeev & Fedor S. Frolov, 2022. "Natural Gas Conversion and Liquid/Solid Organic Waste Gasification by Ultra-Superheated Steam," Energies, MDPI, vol. 15(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3616-:d:816046
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3616/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3616/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sérgio Ferreira & Eliseu Monteiro & Paulo Brito & Cândida Vilarinho, 2019. "A Holistic Review on Biomass Gasification Modified Equilibrium Models," Energies, MDPI, vol. 12(1), pages 1-31, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergey M. Frolov & Anton S. Silantiev & Ilias A. Sadykov & Viktor A. Smetanyuk & Fedor S. Frolov & Jaroslav K. Hasiak & Alexey B. Vorob’ev & Alexey V. Inozemtsev & Jaroslav O. Inozemtsev, 2023. "Gasification of Waste Machine Oil by the Ultra-Superheated Mixture of Steam and Carbon Dioxide," Waste, MDPI, vol. 1(2), pages 1-17, June.
    2. Sergey M. Frolov, 2022. "Organic Waste Gasification by Ultra-Superheated Steam," Energies, MDPI, vol. 16(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    2. Sérgio Ferreira & Eliseu Monteiro & Luís Calado & Valter Silva & Paulo Brito & Cândida Vilarinho, 2019. "Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor," Energies, MDPI, vol. 12(23), pages 1-18, November.
    3. Ziółkowski, Paweł & Stasiak, Kamil & Amiri, Milad & Mikielewicz, Dariusz, 2023. "Negative carbon dioxide gas power plant integrated with gasification of sewage sludge," Energy, Elsevier, vol. 262(PB).
    4. Nadia Cerone & Francesco Zimbardi, 2021. "Effects of Oxygen and Steam Equivalence Ratios on Updraft Gasification of Biomass," Energies, MDPI, vol. 14(9), pages 1-18, May.
    5. Brassard, P. & Godbout, S. & Hamelin, L., 2021. "Framework for consequential life cycle assessment of pyrolysis biorefineries: A case study for the conversion of primary forestry residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Saaida Khlifi & Marzouk Lajili & Saoussen Belghith & Salah Mezlini & Fouzi Tabet & Mejdi Jeguirim, 2020. "Briquettes Production from Olive Mill Waste under Optimal Temperature and Pressure Conditions: Physico-Chemical and Mechanical Characterizations," Energies, MDPI, vol. 13(5), pages 1-14, March.
    7. Safarian, Sahar & Unnthorsson, Runar & Richter, Christiaan, 2020. "The equivalence of stoichiometric and non-stoichiometric methods for modeling gasification and other reaction equilibria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Silva, Isabelly P. & Lima, Rafael M.A. & Santana, Hortência E.P. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2022. "Development of a semi-empirical model for woody biomass gasification based on stoichiometric thermodynamic equilibrium model," Energy, Elsevier, vol. 241(C).
    9. Hafiz Muhammad Uzair Ayub & Sang Jin Park & Michael Binns, 2020. "Biomass to Syngas: Modified Non-Stoichiometric Thermodynamic Models for the Downdraft Biomass Gasification," Energies, MDPI, vol. 13(21), pages 1-17, October.
    10. Silva, Isabelly P. & Lima, Rafael M.A. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2019. "Thermodynamic equilibrium model based on stoichiometric method for biomass gasification: A review of model modifications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    11. Ziółkowski, Paweł & Badur, Janusz & Pawlak- Kruczek, Halina & Stasiak, Kamil & Amiri, Milad & Niedzwiecki, Lukasz & Krochmalny, Krystian & Mularski, Jakub & Madejski, Paweł & Mikielewicz, Dariusz, 2022. "Mathematical modelling of gasification process of sewage sludge in reactor of negative CO2 emission power plant," Energy, Elsevier, vol. 244(PA).
    12. Michael Binns & Hafiz Muhammad Uzair Ayub, 2021. "Model Reduction Applied to Empirical Models for Biomass Gasification in Downdraft Gasifiers," Sustainability, MDPI, vol. 13(21), pages 1-14, November.
    13. Christopher Otto & Thomas Kempka, 2020. "Synthesis Gas Composition Prediction for Underground Coal Gasification Using a Thermochemical Equilibrium Modeling Approach," Energies, MDPI, vol. 13(5), pages 1-17, March.
    14. M. Shahabuddin & Sankar Bhattacharya, 2021. "Co-Gasification Characteristics of Coal and Biomass Using CO 2 Reactant under Thermodynamic Equilibrium Modelling," Energies, MDPI, vol. 14(21), pages 1-12, November.
    15. Jacek Grams, 2022. "Upgrading of Lignocellulosic Biomass to Hydrogen-Rich Gas," Energies, MDPI, vol. 16(1), pages 1-5, December.
    16. Hafiz Muhammad Uzair Ayub & Sang Jin Park & Michael Binns, 2020. "Biomass to Syngas: Modified Stoichiometric Thermodynamic Models for Downdraft Biomass Gasification," Energies, MDPI, vol. 13(20), pages 1-14, October.
    17. Ibrahim, A. & Veremieiev, S. & Gaskell, P.H., 2022. "An advanced, comprehensive thermochemical equilibrium model of a downdraft biomass gasifier," Renewable Energy, Elsevier, vol. 194(C), pages 912-925.
    18. Tavares, Raquel & Monteiro, Eliseu & Tabet, Fouzi & Rouboa, Abel, 2020. "Numerical investigation of optimum operating conditions for syngas and hydrogen production from biomass gasification using Aspen Plus," Renewable Energy, Elsevier, vol. 146(C), pages 1309-1314.
    19. Matheus Oliveira & Ana Ramos & Tamer M. Ismail & Eliseu Monteiro & Abel Rouboa, 2022. "A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments," Energies, MDPI, vol. 15(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3616-:d:816046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.