IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3614-d816042.html
   My bibliography  Save this article

Continuous Extraction and Continuous Backfill Mining Method Using Carbon Dioxide Mineralized Filling Body to Preserve Shallow Water in Northwest China

Author

Listed:
  • Yujun Xu

    (Key Laboratory of Deep Coal Resources Mining, China University of Mining and Technology, Ministry of Education, Xuzhou 221116, China)

  • Liqiang Ma

    (Key Laboratory of Deep Coal Resources Mining, China University of Mining and Technology, Ministry of Education, Xuzhou 221116, China
    School of Energy, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Ichhuy NGO

    (Key Laboratory of Deep Coal Resources Mining, China University of Mining and Technology, Ministry of Education, Xuzhou 221116, China)

  • Jiangtao Zhai

    (Key Laboratory of Deep Coal Resources Mining, China University of Mining and Technology, Ministry of Education, Xuzhou 221116, China)

Abstract

The exploitation and utilization of coal resources are not only prone to causing water table lowering, but also produce a large amount of CO 2 and coal-based solid waste. A scientific concept that employs the CO 2 and solid wastes to develop filling bodies and inject them into the mined-out area, to sequestrate CO 2 and mitigate the overburden migration and thus preserve the overlying aquifer, is proposed. Continuous extraction and continuous backfill (CECB) mining was selected as the mining method to meet the aforementioned objectives. Additionally, carbon dioxide mineralized filling body (CMFB) under ambient temperature and pressure was developed, with fly ash as aggregate, and CO 2 gas, silicate additives and cement as accessories. The uniaxial compressive strength (UCS) and tensile strength of CMFB with various curing times and fly ash contents were tested indoors. A physical analogue simulation and FLAC 3D numerical calculation were then successively implemented on the premise of determining a similar material ratio of CMFB in analogue simulation and calibrating the parameters of the CMFB in numerical simulation. The deformation of aquifuge and water level lowering while using CECB and CMFB with various proportion of fly ash were obtained. When using the CMFB with 75% fly ash content and 28 d curing time, the maximum values of vertical displacement, horizontal displacement, inclination, horizontal deformation and curvature of aquiclude were 26 mm, 6.5 mm, 0.12 mm/m, 0.08 mm/m and 0.0015 mm/m 2 , respectively, and the water table decreased 0.47 m. The results show that the CMFB with 75% fly ash is the most appropriate ratio to realize water preservation mining, CO 2 sequestration and harmless treatment of solid wastes, contributing to the green and sustainable development of coal areas.

Suggested Citation

  • Yujun Xu & Liqiang Ma & Ichhuy NGO & Jiangtao Zhai, 2022. "Continuous Extraction and Continuous Backfill Mining Method Using Carbon Dioxide Mineralized Filling Body to Preserve Shallow Water in Northwest China," Energies, MDPI, vol. 15(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3614-:d:816042
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3614/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3614/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yujun Xu & Liqiang Ma & Yihe Yu, 2020. "Water Preservation and Conservation above Coal Mines Using an Innovative Approach: A Case Study," Energies, MDPI, vol. 13(11), pages 1-28, June.
    2. Xufeng Wang & Dongdong Qin & Dongsheng Zhang & Chundong Sun & Chengguo Zhang & Mengtang Xu & Bo Li, 2017. "Mechanical Characteristics of Superhigh-Water Content Material Concretion and Its Application in Longwall Backfilling," Energies, MDPI, vol. 10(10), pages 1-15, October.
    3. Shuokang Wang & Liqiang Ma, 2019. "Characteristics and Control of Mining Induced Fractures above Longwall Mines Using Backfilling," Energies, MDPI, vol. 12(23), pages 1-24, December.
    4. Yihe Yu & Liqiang Ma, 2019. "Application of Roadway Backfill Mining in Water-Conservation Coal Mining: A Case Study in Northern Shaanxi, China," Sustainability, MDPI, vol. 11(13), pages 1-22, July.
    5. Yanli Huang & Jixiong Zhang & Wei Yin & Qiang Sun, 2017. "Analysis of Overlying Strata Movement and Behaviors in Caving and Solid Backfilling Mixed Coal Mining," Energies, MDPI, vol. 10(7), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yujun Xu & Liqiang Ma & Ichhuy NGO & Jiangtao Zhai, 2022. "Prediction of the Height of Water-Conductive Fractured Zone under Continuous Extraction and Partial Backfill Mining Method—A Case Study," Sustainability, MDPI, vol. 14(11), pages 1-30, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yujun Xu & Liqiang Ma & Ichhuy NGO & Jiangtao Zhai, 2022. "Prediction of the Height of Water-Conductive Fractured Zone under Continuous Extraction and Partial Backfill Mining Method—A Case Study," Sustainability, MDPI, vol. 14(11), pages 1-30, May.
    2. Yihe Yu & Liqiang Ma & Dongsheng Zhang, 2019. "Characteristics of Roof Ground Subsidence While Applying a Continuous Excavation Continuous Backfill Method in Longwall Mining," Energies, MDPI, vol. 13(1), pages 1-20, December.
    3. Yujun Xu & Liqiang Ma & Naseer Muhammad Khan, 2020. "Prediction and Maintenance of Water Resources Carrying Capacity in Mining Area—A Case Study in the Yu-Shen Mining Area," Sustainability, MDPI, vol. 12(18), pages 1-27, September.
    4. Wen Zhai & Wei Li & Yanli Huang & Shenyang Ouyang & Kun Ma & Junmeng Li & Huadong Gao & Peng Zhang, 2020. "A Case Study of the Water Abundance Evaluation of Roof Aquifer Based on the Development Height of Water-Conducting Fracture Zone," Energies, MDPI, vol. 13(16), pages 1-16, August.
    5. Shuokang Wang & Liqiang Ma, 2019. "Characteristics and Control of Mining Induced Fractures above Longwall Mines Using Backfilling," Energies, MDPI, vol. 12(23), pages 1-24, December.
    6. Wenhao Cao & Xufeng Wang & Peng Li & Dongsheng Zhang & Chundong Sun & Dongdong Qin, 2018. "Wide Strip Backfill Mining for Surface Subsidence Control and Its Application in Critical Mining Conditions of a Coal Mine," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    7. André Vervoort, 2020. "The Time Duration of the Effects of Total Extraction Mining Methods on Surface Movement," Energies, MDPI, vol. 13(16), pages 1-12, August.
    8. Krzysztof Skrzypkowski, 2021. "Determination of the Backfilling Time for the Zinc and Lead Ore Deposits with Application of the BackfillCAD Model," Energies, MDPI, vol. 14(11), pages 1-19, May.
    9. Dacian Paul Marian & Ilie Onica & Ramona-Rafila Marian & Dacian-Andrei Floarea, 2020. "Finite Element Analysis of the State of Stresses on the Structures of Buildings Influenced by Underground Mining of Hard Coal Seams in the Jiu Valley Basin (Romania)," Sustainability, MDPI, vol. 12(4), pages 1-25, February.
    10. Adam Smoliński & Dmyto Malashkevych & Mykhailo Petlovanyi & Kanay Rysbekov & Vasyl Lozynskyi & Kateryna Sai, 2022. "Research into Impact of Leaving Waste Rocks in the Mined-Out Space on the Geomechanical State of the Rock Mass Surrounding the Longwall Face," Energies, MDPI, vol. 15(24), pages 1-16, December.
    11. Yuan Gao & Jiandong Huang & Meng Li & Zhongran Dai & Rongli Jiang & Jixiong Zhang, 2021. "Chemical Modification of Combusted Coal Gangue for U(VI) Adsorption: Towards a Waste Control by Waste Strategy," Sustainability, MDPI, vol. 13(15), pages 1-13, July.
    12. Weiqing Zhang & Chaowei Dong & Peng Huang & Qiang Sun & Meng Li & Jun Chai, 2020. "Experimental Study on the Characteristics of Activated Coal Gangue and Coal Gangue-Based Geopolymer," Energies, MDPI, vol. 13(10), pages 1-14, May.
    13. Weiyong Lu & Changchun He & Xin Zhang, 2020. "Height of overburden fracture based on key strata theory in longwall face," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-15, January.
    14. Hengjie Luan & Yujing Jiang & Huili Lin & Yahua Wang, 2017. "A New Thin Seam Backfill Mining Technology and Its Application," Energies, MDPI, vol. 10(12), pages 1-16, December.
    15. Slawomir Porzucek & Monika Loj & Kajetan d’Obyrn, 2022. "Surface Microgravity Monitoring of Underground Water Migration: A Case Study in Wieliczka, Poland," Energies, MDPI, vol. 15(11), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3614-:d:816042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.