IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3560-d814464.html
   My bibliography  Save this article

How to Reduce Carbon Dioxide Emissions from Power Systems in Gansu Province—Analyze from the Life Cycle Perspective

Author

Listed:
  • Wei Shi

    (College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China)

  • Wenwen Tang

    (College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China)

  • Fuwei Qiao

    (College of Economic, Northwest Normal University, Lanzhou 730070, China)

  • Zhiquan Sha

    (College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China)

  • Chengyuan Wang

    (Gansu Province Ecological Environment Science Design and Research Institute, Lanzhou 730022, China)

  • Sixue Zhao

    (College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China)

Abstract

To develop effective strategies to reduce CO 2 emissions from electricity systems, this study accounted for carbon emissions from power systems (production, transmission, consumption) in Gansu Province based on life cycle theory. We used LMDI and SDA decomposition methods to analyze the driving force of carbon emissions and quantified the influence effect and action intensity of various factors on carbon emissions in corresponding links. Several results were found: (1) Direct carbon emissions during the stage of electricity production had the largest share of the entire electricity life cycle. (2) From the perspective of the cumulative contribution rate, electricity consumption and the electricity trade promoted carbon emissions in the stage of electricity production; the power structure, electricity efficiency, and fuel structure had opposite effects. (3) In the stage of electricity transmission, the higher the voltage level, the lower the net loss rate; high-voltage-level transmission lines effectively reduced the growth of implied carbon emissions. (4) Industrial restructuring and technological advances effectively offset the growth in carbon emissions due to population, economy, and electricity consumption. The results can provide a scientific basis for energy-saving and emission reduction policies in provincial government departments and the electric industry.

Suggested Citation

  • Wei Shi & Wenwen Tang & Fuwei Qiao & Zhiquan Sha & Chengyuan Wang & Sixue Zhao, 2022. "How to Reduce Carbon Dioxide Emissions from Power Systems in Gansu Province—Analyze from the Life Cycle Perspective," Energies, MDPI, vol. 15(10), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3560-:d:814464
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3560/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3560/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Ma, Jia-Jun & Du, Gang & Xie, Bai-Chen, 2019. "CO2 emission changes of China's power generation system: Input-output subsystem analysis," Energy Policy, Elsevier, vol. 124(C), pages 1-12.
    3. Zhang, Pengfei & Cai, Wenqiu & Yao, Mingtao & Wang, Zhiyou & Yang, Luzhen & Wei, Wendong, 2020. "Urban carbon emissions associated with electricity consumption in Beijing and the driving factors," Applied Energy, Elsevier, vol. 275(C).
    4. Akpan, P.U. & Fuls, W.F., 2021. "Cycling of coal fired power plants: A generic CO2 emissions factor model for predicting CO2 emissions," Energy, Elsevier, vol. 214(C).
    5. Wang, Wei-Zheng & Liu, Lan-Cui & Liao, Hua & Wei, Yi-Ming, 2021. "Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries," Energy Policy, Elsevier, vol. 151(C).
    6. Kim, Yong-Gun & Yoo, Jonghyun & Oh, Wankeun, 2015. "Driving forces of rapid CO2 emissions growth: A case of Korea," Energy Policy, Elsevier, vol. 82(C), pages 144-155.
    7. Chen, Li & Wemhoff, Aaron P., 2021. "Predicting embodied carbon emissions from purchased electricity for United States counties," Applied Energy, Elsevier, vol. 292(C).
    8. Jaruwan Chontanawat & Paitoon Wiboonchutikula & Atinat Buddhivanich, 2020. "Decomposition Analysis of the Carbon Emissions of the Manufacturing and Industrial Sector in Thailand," Energies, MDPI, vol. 13(4), pages 1-23, February.
    9. Wei Sun & Hua Cai & Yuwei Wang, 2018. "Refined Laspeyres Decomposition-Based Analysis of Relationship between Economy and Electric Carbon Productivity from the Provincial Perspective—Development Mode and Policy," Energies, MDPI, vol. 11(12), pages 1-20, December.
    10. Bo Tranberg & Olivier Corradi & Bruno Lajoie & Thomas Gibon & Iain Staffell & Gorm Bruun Andresen, 2018. "Real-Time Carbon Accounting Method for the European Electricity Markets," Papers 1812.06679, arXiv.org, revised May 2019.
    11. Harrison Fell & Jeremiah X. Johnson, 2021. "Regional disparities in emissions reduction and net trade from renewables," Nature Sustainability, Nature, vol. 4(4), pages 358-365, April.
    12. Wang, Bangjun & Ji, Feng & Zheng, Jie & Xie, Kejia & Feng, Zhaolei, 2021. "Carbon emission reduction of coal-fired power supply chain enterprises under the revenue sharing contract: Perspective of coordination game," Energy Economics, Elsevier, vol. 102(C).
    13. Liang, Sai & Zhang, Tianzhu, 2011. "What is driving CO2 emissions in a typical manufacturing center of South China? The case of Jiangsu Province," Energy Policy, Elsevier, vol. 39(11), pages 7078-7083.
    14. Tengfei Zhang & Yang Song & Jun Yang, 2021. "Relationships between urbanization and CO2 emissions in China: An empirical analysis of population migration," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-20, August.
    15. Du, Mingxi & Wang, Xiaoge & Peng, Changhui & Shan, Yuli & Chen, Huai & Wang, Meng & Zhu, Qiuan, 2018. "Quantification and scenario analysis of CO2 emissions from the central heating supply system in China from 2006 to 2025," Applied Energy, Elsevier, vol. 225(C), pages 869-875.
    16. Ang, B.W. & Liu, Na, 2007. "Handling zero values in the logarithmic mean Divisia index decomposition approach," Energy Policy, Elsevier, vol. 35(1), pages 238-246, January.
    17. Shi, Kaifang & Yang, Qingyuan & Fang, Guangliang & Yu, Bailang & Chen, Zuoqi & Yang, Chengshu & Wu, Jianping, 2019. "Evaluating spatiotemporal patterns of urban electricity consumption within different spatial boundaries: A case study of Chongqing, China," Energy, Elsevier, vol. 167(C), pages 641-653.
    18. Karmellos, M. & Kosmadakis, V. & Dimas, P. & Tsakanikas, A. & Fylaktos, N. & Taliotis, C. & Zachariadis, T., 2021. "A decomposition and decoupling analysis of carbon dioxide emissions from electricity generation: Evidence from the EU-27 and the UK," Energy, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiping Ma & Qianqian Liu & Wenzhong Zhang, 2022. "Examining the Effects of Installed Capacity Mix and Capacity Factor on Aggregate Carbon Intensity for Electricity Generation in China," IJERPH, MDPI, vol. 19(6), pages 1-17, March.
    2. Wang, Wenwen & Li, Man & Zhang, Ming, 2017. "Study on the changes of the decoupling indicator between energy-related CO2 emission and GDP in China," Energy, Elsevier, vol. 128(C), pages 11-18.
    3. Xuankai Deng & Yanhua Yu & Yanfang Liu, 2015. "Effect of Construction Land Expansion on Energy-Related Carbon Emissions: Empirical Analysis of China and Its Provinces from 2001 to 2011," Energies, MDPI, vol. 8(6), pages 1-22, June.
    4. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    5. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    6. Liu, Xiao & Zhou, Dequn & Zhou, Peng & Wang, Qunwei, 2017. "What drives CO2 emissions from China’s civil aviation? An exploration using a new generalized PDA method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 30-45.
    7. Cansino, José M. & Román-Collado, Rocío & Merchán, José, 2019. "Do Spanish energy efficiency actions trigger JEVON’S paradox?," Energy, Elsevier, vol. 181(C), pages 760-770.
    8. Wang, Qiang & Li, Rongrong, 2016. "Journey to burning half of global coal: Trajectory and drivers of China׳s coal use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 341-346.
    9. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    10. Ming Zhang & Qing Xia & Wenwen Wang & Min Zhou, 2014. "Study on temporal and spatial evolution of China’s oil supply and consumption," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 809-825, June.
    11. Jialing Zou & Zhipeng Tang & Shuang Wu, 2019. "Divergent Leading Factors in Energy-Related CO 2 Emissions Change among Subregions of the Beijing–Tianjin–Hebei Area from 2006 to 2016: An Extended LMDI Analysis," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    12. Lin, Boqiang & Lei, Xiaojing, 2015. "Carbon emissions reduction in China's food industry," Energy Policy, Elsevier, vol. 86(C), pages 483-492.
    13. Xiaoshu Cao & Shishu OuYang & Dan Liu & Wenyue Yang, 2019. "Spatiotemporal Patterns and Decomposition Analysis of CO 2 Emissions from Transportation in the Pearl River Delta," Energies, MDPI, vol. 12(11), pages 1-17, June.
    14. Wang, Juan & Hu, Mingming & Rodrigues, João F.D., 2018. "The evolution and driving forces of industrial aggregate energy intensity in China: An extended decomposition analysis," Applied Energy, Elsevier, vol. 228(C), pages 2195-2206.
    15. Wang, Wenchao & Mu, Hailin & Kang, Xudong & Song, Rongchen & Ning, Yadong, 2010. "Changes in industrial electricity consumption in china from 1998 to 2007," Energy Policy, Elsevier, vol. 38(7), pages 3684-3690, July.
    16. Zha, Donglan & Yang, Guanglei & Wang, Qunwei, 2019. "Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method," Energy Economics, Elsevier, vol. 84(C).
    17. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    18. Karmellos, M. & Kosmadakis, V. & Dimas, P. & Tsakanikas, A. & Fylaktos, N. & Taliotis, C. & Zachariadis, T., 2021. "A decomposition and decoupling analysis of carbon dioxide emissions from electricity generation: Evidence from the EU-27 and the UK," Energy, Elsevier, vol. 231(C).
    19. Linna Li, 2019. "Structure and influencing factors of CO2 emissions from transport sector in three major metropolitan regions of China: estimation and decomposition," Transportation, Springer, vol. 46(4), pages 1245-1269, August.
    20. Fujii, Hidemichi & Webb, Jeremy & Mundree, Sagadevan & Rowlings, David & Grace, Peter & Wilson, Clevo & Managi, Shunsuke, 2024. "Priority change and driving factors in the voluntary carbon offset market," MPRA Paper 120657, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3560-:d:814464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.