IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3522-d813304.html
   My bibliography  Save this article

Process Modeling and Exergy Analysis for a Typical VOC Thermal Conversion Plant

Author

Listed:
  • Wencai Zhuo

    (School of Energy and Environment, Southeast University, Nanjing 210042, China
    Department of Chemical Engineering, Southeast-Monash Joint Graduate School, SIP, Suzhou 215123, China)

  • Bin Zhou

    (School of Energy and Environment, Southeast University, Nanjing 210042, China)

  • Zhicheng Zhang

    (Suzhou Beyond Environmental Protection Technology Co., Ltd., Suzhou 215200, China)

  • Hailiang Zhou

    (Suzhou Beyond Environmental Protection Technology Co., Ltd., Suzhou 215200, China)

  • Baiqian Dai

    (Department of Chemical Engineering, Southeast-Monash Joint Graduate School, SIP, Suzhou 215123, China
    Department of Chemical & Biological Engineering, Monash University, Melbourne, VIC 3800, Australia)

Abstract

The emission of volatile organic compounds (VOCs) represents a major source of air pollution and presents a major risk to both the surrounding environment and local health. An efficient and clean VOCs conversion process is an important approach for energy conservation and emission reduction. In this work, process simulation is conducted using Aspen Plus according to a VOC thermal oxidizing plant for an industrial-scale aluminum spraying production process. Experimental measurements are used for model validation and the pollutant emissions are consistent with the actual plant operating parameters, where the concentration of sulfur oxides is 32 mg/m³, and that of nitrogen oxides is ~34 mg/m³, both of which are below the requirements specified by the national environment regulations in China. Energy and exergy analyses have been conducted from the perspective of the second law of thermodynamics. It is found that 68.8% of the output energy in the system considered here enters the subsequent oven production line, which will be reused for drying the aluminum plates, and the rest of the energy will contribute to the water heat exchanger; however, the furnace features the largest exergy loss of 34%, and this is due to the high-temperature heat loss. The water heat exchanger features 11.5% exergy loss, which is the largest for the series of heat exchangers, and this loss is due to the large temperature difference between the hot and cold streams in the water heat exchanger. These findings are expected to provide practical approaches to energy conservation from the perspective of energy management.

Suggested Citation

  • Wencai Zhuo & Bin Zhou & Zhicheng Zhang & Hailiang Zhou & Baiqian Dai, 2022. "Process Modeling and Exergy Analysis for a Typical VOC Thermal Conversion Plant," Energies, MDPI, vol. 15(10), pages 1-11, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3522-:d:813304
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3522/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3522/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Behbahaninia, A. & Ramezani, S. & Lotfi Hejrandoost, M., 2017. "A loss method for exergy auditing of steam boilers," Energy, Elsevier, vol. 140(P1), pages 253-260.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heydar Maddah & Milad Sadeghzadeh & Mohammad Hossein Ahmadi & Ravinder Kumar & Shahaboddin Shamshirband, 2019. "Modeling and Efficiency Optimization of Steam Boilers by Employing Neural Networks and Response-Surface Method (RSM)," Mathematics, MDPI, vol. 7(7), pages 1-17, July.
    2. Hang Yin & Yingai Jin & Liang Li & Wenbo Lv, 2022. "Numerical Investigation on the Impact of Exergy Analysis and Structural Improvement in Power Plant Boiler through Co-Simulation," Energies, MDPI, vol. 15(21), pages 1-19, October.
    3. Ramos, Vinícius Faria & Pinheiro, Olivert Soares & Ferreira da Costa, Esly & Souza da Costa, Andréa Oliveira, 2019. "A method for exergetic analysis of a real kraft biomass boiler," Energy, Elsevier, vol. 183(C), pages 946-957.
    4. Wang, Yanhong & Yu, Jie & Liang, Hejun & Li, Qi & Hu, Pengfei & Wang, Di, 2024. "Modeling on rapid prediction and cause diagnosis of boiler combustion efficiency," Energy, Elsevier, vol. 302(C).
    5. Sang-Mok Lee & So-Won Choi & Eul-Bum Lee, 2023. "Prediction Modeling of Flue Gas Control for Combustion Efficiency Optimization for Steel Mill Power Plant Boilers Based on Partial Least Squares Regression (PLSR)," Energies, MDPI, vol. 16(19), pages 1-33, September.
    6. Madejski, Paweł & Żymełka, Piotr, 2020. "Calculation methods of steam boiler operation factors under varying operating conditions with the use of computational thermodynamic modeling," Energy, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3522-:d:813304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.