IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3474-d812029.html
   My bibliography  Save this article

Effect of In-Pore Wettability on Mass Transfer Performance of Fuel Cell Gas Diffusion Layer

Author

Listed:
  • Qinchuan Niu

    (School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350002, China
    School of Information and Electromechanical Engineering, Ningde Normal University, Ningde 350900, China
    These authors contributed equally to this work.)

  • Minglin Li

    (School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350002, China
    These authors contributed equally to this work.)

  • Lianfeng Lai

    (School of Information and Electromechanical Engineering, Ningde Normal University, Ningde 350900, China)

Abstract

The gas diffusion layer (GDL), as the main mass transfer carrier in a hydrogen fuel cell, transports fuel and discharges water, the only by-product of the electrochemical reaction. The dispersion process of water in the pore will hinder the diffusion of gas, thus reducing the concentration of fuel gas at the catalytic site, resulting in the decrease of the electrochemical reaction rate. In this paper, the effect of wettability in the GDL hole on the water transport process is studied. When the pore wall is hydrophilic, the liquid phase is affected by the gas phase eddy current velocity field, and the particles at the center advance to the edge, forming a liquid phase interface with a thin center and thick edge. With the increase of the wall contact angle, the curvature of the three-phase interface increases, the wall adhesion decreases, and the liquid phase is more likely to be discharged. When the contact angle is 130°, the liquid phase almost does not shift in the hole with a radius of 5 μm. With the increase of the radius or inlet pressure difference, the liquid phase is discharged gradually, and the discharge rate of the liquid phase is only related to the wettability of the wall.

Suggested Citation

  • Qinchuan Niu & Minglin Li & Lianfeng Lai, 2022. "Effect of In-Pore Wettability on Mass Transfer Performance of Fuel Cell Gas Diffusion Layer," Energies, MDPI, vol. 15(10), pages 1-12, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3474-:d:812029
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3474/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3474/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mengbo Ji & Zidong Wei, 2009. "A Review of Water Management in Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 2(4), pages 1-50, November.
    2. Mengying Fan & Fengyun Duan & Tianqi Wang & Mingming Kang & Bin Zeng & Jian Xu & Ryan Anderson & Wei Du & Lifeng Zhang, 2021. "Effect of Pore Shape and Spacing on Water Droplet Dynamics in Flow Channels of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 14(5), pages 1-18, February.
    3. Robert Alink & Dietmar Gerteisen, 2013. "Modeling the Liquid Water Transport in the Gas Diffusion Layer for Polymer Electrolyte Membrane Fuel Cells Using a Water Path Network," Energies, MDPI, vol. 6(9), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongmin Wan & Huawei Chang & Shuiming Shu & Yongxiang Wang & Haolin Tang, 2014. "A Review on Cold Start of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 7(5), pages 1-25, May.
    2. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2016. "PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters," Energy, Elsevier, vol. 116(P1), pages 1131-1144.
    3. Samuel Simon Araya & Fan Zhou & Simon Lennart Sahlin & Sobi Thomas & Christian Jeppesen & Søren Knudsen Kær, 2019. "Fault Characterization of a Proton Exchange Membrane Fuel Cell Stack," Energies, MDPI, vol. 12(1), pages 1-17, January.
    4. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    5. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    6. Li, Wenkai & Zhang, Qinglei & Wang, Chao & Yan, Xiaohui & Shen, Shuiyun & Xia, Guofeng & Zhu, Fengjuan & Zhang, Junliang, 2017. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs," Applied Energy, Elsevier, vol. 195(C), pages 278-288.
    7. Baosheng Bai & Yi-Tung Chen, 2018. "Simulation of the Oxygen Reduction Reaction (ORR) Inside the Cathode Catalyst Layer (CCL) of Proton Exchange Membrane Fuel Cells Using the Kinetic Monte Carlo Method," Energies, MDPI, vol. 11(10), pages 1-18, September.
    8. Zhiani, Mohammad & Majidi, Somayeh & Silva, Valter Bruno & Gharibi, Hussein, 2016. "Comparison of the performance and EIS (electrochemical impedance spectroscopy) response of an activated PEMFC (proton exchange membrane fuel cell) under low and high thermal and pressure stresses," Energy, Elsevier, vol. 97(C), pages 560-567.
    9. Seohee Lim & Jin-Soo Park, 2020. "Composite Membranes Using Hydrophilized Porous Substrates for Hydrogen Based Energy Conversion," Energies, MDPI, vol. 13(22), pages 1-14, November.
    10. Riccardo Balzarotti & Saverio Latorrata & Marco Mariani & Paola Gallo Stampino & Giovanni Dotelli, 2020. "Optimization of Perfluoropolyether-Based Gas Diffusion Media Preparation for PEM Fuel Cells," Energies, MDPI, vol. 13(7), pages 1-14, April.
    11. Tan, Weng Cheong & Saw, Lip Huat & Thiam, Hui San & Xuan, Jin & Cai, Zuansi & Yew, Ming Chian, 2018. "Overview of porous media/metal foam application in fuel cells and solar power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 181-197.
    12. Nguyen Duy Vinh & Hyung-Man Kim, 2016. "Comparison of Numerical and Experimental Studies for Flow-Field Optimization Based on Under-Rib Convection in Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 9(10), pages 1-17, October.
    13. Devin Fowler & Vladimir Gurau & Daniel Cox, 2019. "Bridging the Gap between Automated Manufacturing of Fuel Cell Components and Robotic Assembly of Fuel Cell Stacks," Energies, MDPI, vol. 12(19), pages 1-14, September.
    14. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    15. Boyaci San, Fatma Gül & Isik-Gulsac, Isil & Okur, Osman, 2013. "Analysis of the polymer composite bipolar plate properties on the performance of PEMFC (polymer electrolyte membrane fuel cells) by RSM (response surface methodology)," Energy, Elsevier, vol. 55(C), pages 1067-1075.
    16. Wong, A.K.C. & Ge, N. & Shrestha, P. & Liu, H. & Fahy, K. & Bazylak, A., 2019. "Polytetrafluoroethylene content in standalone microporous layers: Tradeoff between membrane hydration and mass transport losses in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 240(C), pages 549-560.
    17. Fadzillah, D.M. & Rosli, M.I. & Talib, M.Z.M. & Kamarudin, S.K. & Daud, W.R.W., 2017. "Review on microstructure modelling of a gas diffusion layer for proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1001-1009.
    18. Hoang Nghia Vu & Xuan Linh Nguyen & Sangseok Yu, 2022. "A Lumped-Mass Model of Membrane Humidifier for PEMFC," Energies, MDPI, vol. 15(6), pages 1-16, March.
    19. Boškoski, Pavle & Debenjak, Andrej & Mileva Boshkoska, Biljana, 2018. "Rayleigh copula for describing impedance data—with application to condition monitoring of proton exchange membrane fuel cells," European Journal of Operational Research, Elsevier, vol. 266(1), pages 269-277.
    20. Noor H. Jawad & Ali Amer Yahya & Ali R. Al-Shathr & Hussein G. Salih & Khalid T. Rashid & Saad Al-Saadi & Adnan A. AbdulRazak & Issam K. Salih & Adel Zrelli & Qusay F. Alsalhy, 2022. "Fuel Cell Types, Properties of Membrane, and Operating Conditions: A Review," Sustainability, MDPI, vol. 14(21), pages 1-48, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3474-:d:812029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.