IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p83-d709315.html
   My bibliography  Save this article

Strategy of Compatible Use of Jet and Plunger Pump with Chrome Parts in Oil Well

Author

Listed:
  • Oleg Bazaluk

    (Belt and Road Initiative Institute for Chinese-European Studies (BRIICES), Guangdong University of Petrochemical Technology, Maoming 525000, China)

  • Olha Dubei

    (Department of Petroleum Production, Ivano-Frankivsk National Technical University of Oil and Gas, 076019 Ivano-Frankivsk, Ukraine)

  • Liubomyr Ropyak

    (Department of Computerized Engineering, Ivano-Frankivsk National Technical University of Oil and Gas, 076019 Ivano-Frankivsk, Ukraine)

  • Maksym Shovkoplias

    (Department of Computerized Engineering, Ivano-Frankivsk National Technical University of Oil and Gas, 076019 Ivano-Frankivsk, Ukraine)

  • Tetiana Pryhorovska

    (Department of Engineering and Computer Graphics, Ivano-Frankivsk National Technical University of Oil and Gas, 076019 Ivano-Frankivsk, Ukraine)

  • Vasyl Lozynskyi

    (Department of Mining Engineering and Education, Dnipro University of Technology, 49005 Dnipro, Ukraine)

Abstract

During oil fields operation, gas is extracted along with oil. In this article it is suggested to use jet pumps for utilization of the associated oil gas, burning of which causes environmental degradation and poses a potential threat to the human body. In order to determine the possibility of simultaneous application of a sucker-rod pump, which is driven by a rocking machine, and a jet pump (ejector) in the oil well, it is necessary to estimate the distribution of pressure along the borehole from the bottomhole to the mouth for two cases: when the well is operated only be the sucker-rod pump and while additional installation of the oil-gas jet pump above its dynamic level. For this purpose, commonly known methods of Poettman-Carpenter and Baksendel were used. In addition, the equations of high-pressure and low-pressure oil-gas jet pumps were obtained for the case, when the working stream of the jet pump is a gas-oil production mixture and the injected stream is a gas from the annulus of the well. The values which are included in the resulting equations are interrelated and can only be found in a certain sequence. Therefore, a special methodology has been developed for the practical usage of these equations in order to calculate the working parameters of a jet pump based on the given independent working parameters of the oil well. Using this methodology, which was implemented in computer programs, many operating parameters were calculated both for the well and for the jet pump itself (pressures, densities of working, injected and mixed flows, flow velocities and other parameters in control sections). According to the results of calculations, graphs were built that indicate a number of regularities during the oil well operation with such a jet pump. The main result of the performed research is a recommendation list on the choice of the oil-gas jet pump location inside the selected oil well and generalization of the principles for choosing the perfect location of such ejectors for other wells. The novelty of the proposed study lays in a systematic approach to rod pump and our patented ejector pump operation in the oil and chrome plating of pump parts. The result of scientific research is a sound method of determining the rational location of the ejector in the oil well and the calculation of its geometry, which will provide a complete selection of petroleum gas released into the annulus of the oil well. To ensure reliable operation of jet and plunger pumps in oil wells, it is proposed to use reinforcement of parts (bushings, plungers, rods, etc.) by electrochemical chromium plating in a flowing electrolyte. This has significantly increased the wear resistance and corrosion resistance of the operational surfaces of these parts and, accordingly, the service life of the pumps. Such measures will contribute to oil production intensification from wells and improve the environmental condition of oil fields.

Suggested Citation

  • Oleg Bazaluk & Olha Dubei & Liubomyr Ropyak & Maksym Shovkoplias & Tetiana Pryhorovska & Vasyl Lozynskyi, 2021. "Strategy of Compatible Use of Jet and Plunger Pump with Chrome Parts in Oil Well," Energies, MDPI, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:83-:d:709315
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/83/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/83/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philippe Le Billon & Berit Kristoffersen, 2020. "Just cuts for fossil fuels? Supply-side carbon constraints and energy transition," Environment and Planning A, , vol. 52(6), pages 1072-1092, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huiyan Zhang & Daohang Zou & Xuelong Yang & Jiegang Mou & Qiwei Zhou & Maosen Xu, 2022. "Liquid–Gas Jet Pump: A Review," Energies, MDPI, vol. 15(19), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenzo Pellegrini & Murat Arsel & Gorka Muñoa & Guillem Rius-Taberner & Carlos Mena & Martí Orta-Martínez, 2024. "The atlas of unburnable oil for supply-side climate policies," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Marcin Kremieniewski, 2022. "Improving the Efficiency of Oil Recovery in Research and Development," Energies, MDPI, vol. 15(12), pages 1-7, June.
    3. Kai A. Konrad & Raisa Sherif, 2022. "Climate Experts' Views on Hydrocarbon Energy Phase-Out," Working Papers tax-mpg-rps-2022-10, Max Planck Institute for Tax Law and Public Finance.
    4. Philippe Le Billon & Païvi Lujala & Devyani Singh & Vance Culbert & Berit Kristoffersen, 2021. "Fossil fuels, climate change, and the COVID-19 crisis: pathways for a just and green post-pandemic recovery," Climate Policy, Taylor & Francis Journals, vol. 21(10), pages 1347-1356, November.
    5. Kamila Svobodova & John R. Owen & Deanna Kemp & Vítězslav Moudrý & Éléonore Lèbre & Martin Stringer & Benjamin K. Sovacool, 2022. "Decarbonization, population disruption and resource inventories in the global energy transition," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Oleg Bazaluk & Andrii Velychkovych & Liubomyr Ropyak & Mykhailo Pashechko & Tetiana Pryhorovska & Vasyl Lozynskyi, 2021. "Influence of Heavy Weight Drill Pipe Material and Drill Bit Manufacturing Errors on Stress State of Steel Blades," Energies, MDPI, vol. 14(14), pages 1-15, July.
    7. Michał Bembenek & Volodymyr Kotsyubynsky & Volodymyra Boychuk & Bogdan Rachiy & Ivan Budzulyak & Łukasz Kowalski & Liubomyr Ropyak, 2022. "Effect of Synthesis Conditions on Capacitive Properties of Porous Carbon Derived from Hemp Bast Fiber," Energies, MDPI, vol. 15(22), pages 1-15, November.
    8. Si, Minxing & Bai, Ling & Du, Ke, 2021. "Fuel consumption analysis and cap and trade system evaluation for Canadian in situ oil sands extraction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Liang Cheng, 2024. "RETRACTED ARTICLE: Energy transition and the role of circular supply chains: toward resource efficiency and sustainable economic practices," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-19, April.
    10. Burke, Paul J. & Beck, Fiona J. & Aisbett, Emma & Baldwin, Kenneth G.H. & Stocks, Matthew & Pye, John & Venkataraman, Mahesh & Hunt, Janet & Bai, Xuemei, 2022. "Contributing to regional decarbonization: Australia's potential to supply zero-carbon commodities to the Asia-Pacific," Energy, Elsevier, vol. 248(C).
    11. Jason Monios, 2023. "The Moral Limits of Market-Based Mechanisms: An Application to the International Maritime Sector," Journal of Business Ethics, Springer, vol. 187(2), pages 283-299, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:83-:d:709315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.