IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p259-d715211.html
   My bibliography  Save this article

Aspects of Energy Saving of Oil-Producing Enterprises

Author

Listed:
  • Katarzyna Midor

    (Faculty of Organization and Management, Silesian University of Technology, 41-800 Zabrze, Poland)

  • Tatyana N. Ivanova

    (Tchaikovsky Branch “Perm National Research Polytechnic Institute”, 617764 Tchaikovsky, 426000 Izhevsk, Russia)

  • Michał Molenda

    (Faculty of Organization and Management, Silesian University of Technology, 41-800 Zabrze, Poland)

  • Witold Biały

    (KOMAG Institute of Mining Technology, 44-101 Gliwice, Poland)

  • Oleg V. Zakharov

    (Department Technology of Mechanical Engineering, Yuri Gagarin State Technical University of Saratov, 410054 Saratov, Russia)

Abstract

Increasing energy efficiency is included in the UN Sustainable Development Goals (SDGs) to be achieved by the year 2030. Enhancing energy efficiency is also one of the priority areas for improving the operational efficiency of any oil production enterprise. The energy management system of enterprises has been founded and implemented on the basis of the international standard ISO 50001:2018 and it works successfully. The energy efficiency strategy is formulated in the energy policy and integrated into the business model of the companies. Companies receive significant energy savings in the exploration and production segments through technical, technological, and organizational measures. This article shows the main directions for improving the energy efficiency of the artificial lift well stock and the results of their implementation. The main constraints on the implementation of the energy efficiency policy of oil-producing enterprises have been identified and directions for improvement of energy-saving structure have been proposed. The article proposes strategic-level classification of energy-saving measures, which is based on assessment and comparison of implementation costs, payback period, and takes into account investments into artificial lift technology, therefore allowing investment priorities in the energy management sphere to be distinguished. Advanced directions for investment in oil-production technology have been identified, and an algorithm of development and implementation of key indicators of energy consumption efficiency has been proposed.

Suggested Citation

  • Katarzyna Midor & Tatyana N. Ivanova & Michał Molenda & Witold Biały & Oleg V. Zakharov, 2021. "Aspects of Energy Saving of Oil-Producing Enterprises," Energies, MDPI, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:259-:d:715211
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/259/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/259/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Izabela Zimoch & Ewelina Bartkiewicz & Joanna Machnik-Slomka & Iwona Klosok-Bazan & Adam Rak & Stanislav Rusek, 2021. "Sustainable Water Supply Systems Management for Energy Efficiency: A Case Study," Energies, MDPI, vol. 14(16), pages 1-20, August.
    2. Frederic Marimon & Martí Casadesús, 2017. "Reasons to Adopt ISO 50001 Energy Management System," Sustainability, MDPI, vol. 9(10), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wadim Strielkowski & Anna Sherstobitova & Patrik Rovny & Tatiana Evteeva, 2021. "Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review," Energies, MDPI, vol. 14(11), pages 1-19, May.
    2. Cristian Méndez Rodríguez & Juliana Salazar Benítez & Carlos Felipe Rengifo Rodas & Juan Carlos Corrales & Apolinar Figueroa Casas, 2022. "A Multidisciplinary Approach Integrating Emergy Analysis and Process Modeling for Agricultural Systems Sustainable Management—Coffee Farm Validation," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    3. Elena Helerea & Marius D. Calin & Cristian Musuroi, 2023. "Water Energy Nexus and Energy Transition—A Review," Energies, MDPI, vol. 16(4), pages 1-31, February.
    4. Liudmyla Davydenko & Nina Davydenko & Andrii Bosak & Alla Bosak & Agnieszka Deja & Tygran Dzhuguryan, 2022. "Smart Sustainable Freight Transport for a City Multi-Floor Manufacturing Cluster: A Framework of the Energy Efficiency Monitoring of Electric Vehicle Fleet Charging," Energies, MDPI, vol. 15(10), pages 1-27, May.
    5. Dariusz Andraka & Wojciech Kruszyński & Jacek Tyniec & Joanna Gwoździej-Mazur & Bartosz Kaźmierczak, 2023. "Practical Aspects of the Energy Efficiency Evaluation of a Water Distribution Network Using Hydrodynamic Modeling—A Case Study," Energies, MDPI, vol. 16(8), pages 1-17, April.
    6. Jan Kaselofsky & Marika Rošā & Anda Jekabsone & Solenne Favre & Gabriel Loustalot & Michaël Toma & Jose Pablo Delgado Marín & Manuel Moreno Nicolás & Emanuele Cosenza, 2021. "Getting Municipal Energy Management Systems ISO 50001 Certified: A Study with 28 European Municipalities," Sustainability, MDPI, vol. 13(7), pages 1-17, March.
    7. Noor Shakir Mahmood & Ahmed Ali Ajmi & Shamsul Bin Sarip & Hazilah Mad Kaidi & Khairur Rijal Jamaludin & Hayati Habibah Abdul Talib, 2022. "Modeling the Sustainable Integration of Quality and Energy Management in Power Plants," Sustainability, MDPI, vol. 14(4), pages 1-19, February.
    8. Carlos Herce & Enrico Biele & Chiara Martini & Marcello Salvio & Claudia Toro, 2021. "Impact of Energy Monitoring and Management Systems on the Implementation and Planning of Energy Performance Improved Actions: An Empirical Analysis Based on Energy Audits in Italy," Energies, MDPI, vol. 14(16), pages 1-21, August.
    9. Julian Löbbers & Sebastian Lins & Theresa Kromat & Alexander Benlian & Ali Sunyaev, 2022. "A multi-perspective lens on web assurance seals: contrasting vendors’ intended and consumers’ perceived effects," Electronic Commerce Research, Springer, vol. 22(4), pages 1573-1615, December.
    10. Adila El Maghraoui & Younes Ledmaoui & Oussama Laayati & Hicham El Hadraoui & Ahmed Chebak, 2022. "Smart Energy Management: A Comparative Study of Energy Consumption Forecasting Algorithms for an Experimental Open-Pit Mine," Energies, MDPI, vol. 15(13), pages 1-22, June.
    11. Kelly M. Smith & Stephen Wilson & Paul Lant & Maureen E. Hassall, 2022. "How Do We Learn about Drivers for Industrial Energy Efficiency—Current State of Knowledge," Energies, MDPI, vol. 15(7), pages 1-26, April.
    12. Wei Guo & Thomas Wenning & Jennifer Travis & Michael Stowe & Kristina Armstrong & Sachin Nimbalkar & Eli Levine, 2022. "Initial Findings from US Department of Energy’s Better Plants Virtual in-Plant Training on 50001 Ready," Energies, MDPI, vol. 15(15), pages 1-15, July.
    13. Izabela Simon Rampasso & Geraldo Pereira Melo Filho & Rosley Anholon & Robson Amarante de Araujo & Gilson Brito Alves Lima & Luis Perez Zotes & Walter Leal Filho, 2019. "Challenges Presented in the Implementation of Sustainable Energy Management via ISO 50001:2011," Sustainability, MDPI, vol. 11(22), pages 1-12, November.
    14. Akvile Lawrence & Patrik Thollander & Magnus Karlsson, 2018. "Drivers, Barriers, and Success Factors for Improving Energy Management in the Pulp and Paper Industry," Sustainability, MDPI, vol. 10(6), pages 1-35, June.
    15. Nora Munguia & Javier Esquer & Hector Guzman & Janim Herrera & Jesus Gutierrez-Ruelas & Luis Velazquez, 2020. "Energy Efficiency in Public Buildings: A Step toward the UN 2030 Agenda for Sustainable Development," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    16. Fuchs, Heidi & Aghajanzadeh, Arian & Therkelsen, Peter, 2020. "Identification of drivers, benefits, and challenges of ISO 50001 through case study content analysis," Energy Policy, Elsevier, vol. 142(C).
    17. Hasan, A S M Monjurul & Tuhin, Rashedul Amin & Ullah, Mahfuz & Sakib, Taiyeb Hasan & Thollander, Patrik & Trianni, Andrea, 2021. "A comprehensive investigation of energy management practices within energy intensive industries in Bangladesh," Energy, Elsevier, vol. 232(C).
    18. Luis Angel Iturralde Carrera & Andrés Lorenzo Álvarez González & Juvenal Rodríguez-Reséndiz & José Manuel Álvarez-Alvarado, 2023. "Selection of the Energy Performance Indicator for Hotels Based on ISO 50001: A Case Study," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    19. Elpida V. Tachmitzaki & Eleni A. Didaskalou & Dimitrios A. Georgakellos, 2019. "Energy Management Practices’ Determinants in Greek Enterprises," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
    20. Vichan Nakthong & Kuskana Kubaha, 2019. "Development of a Sustainability Index for an Energy Management System in Thailand," Sustainability, MDPI, vol. 11(17), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:259-:d:715211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.