IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2657-d549412.html
   My bibliography  Save this article

Enhancing Cybersecurity in Smart Grids: False Data Injection and Its Mitigation

Author

Listed:
  • Derya Betul Unsal

    (Department of Energy Science and Technology, Renewable Energy Research Center, Cumhuriyet University, Sivas 58140, Turkey)

  • Taha Selim Ustun

    (Fukushima Renewable Energy Institute, AIST (FREA), Koriyama 963-0298, Japan)

  • S. M. Suhail Hussain

    (Fukushima Renewable Energy Institute, AIST (FREA), Koriyama 963-0298, Japan)

  • Ahmet Onen

    (Department of Electrical and Electronics Engineering, Abdullah Gul University, Kayseri 38170, Turkey)

Abstract

Integration of information technologies with power systems has unlocked unprecedented opportunities in optimization and control fields. Increased data collection and monitoring enable control systems to have a better understanding of the pseudo-real-time condition of power systems. In this fashion, more accurate and effective decisions can be made. This is the key towards mitigating negative impacts of novel technologies such as renewables and electric vehicles and increasing their share in the overall generation portfolio. However, such extensive information exchange has created cybersecurity vulnerabilities in power systems that were not encountered before. It is imperative that these vulnerabilities are understood well, and proper mitigation techniques are implemented. This paper presents an extensive study of cybersecurity concerns in Smart grids in line with latest developments. Relevant standardization and mitigation efforts are discussed in detail and then the classification of different cyber-attacks in smart grid domain with special focus on false data injection (FDI) attack, due to its high impact on different operations. Different uses of this attack as well as developed detection models and methods are analysed. Finally, impacts on smart grid operation and current challenges are presented for future research directions.

Suggested Citation

  • Derya Betul Unsal & Taha Selim Ustun & S. M. Suhail Hussain & Ahmet Onen, 2021. "Enhancing Cybersecurity in Smart Grids: False Data Injection and Its Mitigation," Energies, MDPI, vol. 14(9), pages 1-36, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2657-:d:549412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2657/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2657/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sk Abdul Aleem & S. M. Suhail Hussain & Taha Selim Ustun, 2020. "A Review of Strategies to Increase PV Penetration Level in Smart Grids," Energies, MDPI, vol. 13(3), pages 1-28, February.
    2. Dai Wang & Xiaohong Guan & Ting Liu & Yun Gu & Chao Shen & Zhanbo Xu, 2014. "Extended Distributed State Estimation: A Detection Method against Tolerable False Data Injection Attacks in Smart Grids," Energies, MDPI, vol. 7(3), pages 1-22, March.
    3. Vlad Daniel SAVIN & Costel SERBAN, 2019. "Cybersecurity Vulnerabilities And Threats Of Scada Systems In Critical Infrastructures," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 13(1), pages 234-237, November.
    4. Mehdi Ganjkhani & Seyedeh Narjes Fallah & Sobhan Badakhshan & Shahaboddin Shamshirband & Kwok-wing Chau, 2019. "A Novel Detection Algorithm to Identify False Data Injection Attacks on Power System State Estimation," Energies, MDPI, vol. 12(11), pages 1-19, June.
    5. Oyeniyi Akeem Alimi & Khmaies Ouahada & Adnan M. Abu-Mahfouz, 2019. "Real Time Security Assessment of the Power System Using a Hybrid Support Vector Machine and Multilayer Perceptron Neural Network Algorithms," Sustainability, MDPI, vol. 11(13), pages 1-18, June.
    6. Ustun, Taha Selim & Ozansoy, Cagil & Zayegh, Aladin, 2011. "Recent developments in microgrids and example cases around the world—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4030-4041.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren Liu & Hussain M. Mustafa & Zhijie Nie & Anurag K. Srivastava, 2022. "Reachability-Based False Data Injection Attacks and Defence Mechanisms for Cyberpower System," Energies, MDPI, vol. 15(5), pages 1-18, February.
    2. Nakkeeran Murugesan & Anantha Narayanan Velu & Bagavathi Sivakumar Palaniappan & Balamurugan Sukumar & Md. Jahangir Hossain, 2024. "Mitigating Missing Rate and Early Cyberattack Discrimination Using Optimal Statistical Approach with Machine Learning Techniques in a Smart Grid," Energies, MDPI, vol. 17(8), pages 1-34, April.
    3. Taha Selim Ustun, 2022. "Cybersecurity in Smart Grids," Energies, MDPI, vol. 15(15), pages 1-3, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    2. Hosseini, Seyed Amir & Abyaneh, Hossein Askarian & Sadeghi, Seyed Hossein Hesamedin & Razavi, Farzad & Nasiri, Adel, 2016. "An overview of microgrid protection methods and the factors involved," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 174-186.
    3. Gonocruz, Ruth Anne Tanlioco & Yoshida, Yoshikuni & Ozawa, Akito & Aguirre, Rodolfo A. & Maguindayao, Edward Joseph H., 2023. "Impacts of agrivoltaics in rural electrification and decarbonization in the Philippines," Applied Energy, Elsevier, vol. 350(C).
    4. Giacomo Valente & Vittoriano Muttillo & Mirco Muttillo & Gianluca Barile & Alfiero Leoni & Walter Tiberti & Luigi Pomante, 2019. "SPOF—Slave Powerlink on FPGA for Smart Sensors and Actuators Interfacing for Industry 4.0 Applications," Energies, MDPI, vol. 12(9), pages 1-13, April.
    5. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    6. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.
    7. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Mihai Sanduleac & Gianluca Lipari & Antonello Monti & Artemis Voulkidis & Gianluca Zanetto & Antonello Corsi & Lucian Toma & Giampaolo Fiorentino & Dumitru Federenciuc, 2017. "Next Generation Real-Time Smart Meters for ICT Based Assessment of Grid Data Inconsistencies," Energies, MDPI, vol. 10(7), pages 1-16, June.
    9. Yong Long & Yu Wang & Chengrong Pan, 2018. "Incentive Mechanism of Micro-grid Project Development," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    10. Adil, Ali M. & Ko, Yekang, 2016. "Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1025-1037.
    11. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
    12. Guillermo Almonacid-Olleros & Gabino Almonacid & David Gil & Javier Medina-Quero, 2022. "Evaluation of Transfer Learning and Fine-Tuning to Nowcast Energy Generation of Photovoltaic Systems in Different Climates," Sustainability, MDPI, vol. 14(5), pages 1-15, March.
    13. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    14. Daniel Sousa-Dias & Daniel Amyot & Ashkan Rahimi-Kian & John Mylopoulos, 2023. "A Review of Cybersecurity Concerns for Transactive Energy Markets," Energies, MDPI, vol. 16(13), pages 1-32, June.
    15. Dhanuja Lekshmi J & Zakir Hussain Rather & Bikash C Pal, 2021. "A New Tool to Assess Maximum Permissible Solar PV Penetration in a Power System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    16. Sheha, Moataz & Mohammadi, Kasra & Powell, Kody, 2021. "Techno-economic analysis of the impact of dynamic electricity prices on solar penetration in a smart grid environment with distributed energy storage," Applied Energy, Elsevier, vol. 282(PA).
    17. Meng Xia & Dajun Du & Minrui Fei & Xue Li & Taicheng Yang, 2020. "A Novel Sparse Attack Vector Construction Method for False Data Injection in Smart Grids," Energies, MDPI, vol. 13(11), pages 1-19, June.
    18. Juanpera, M. & Ferrer-Martí, L. & Pastor, R., 2022. "Multi-stage optimization of rural electrification planning at regional level considering multiple criteria. Case study in Nigeria," Applied Energy, Elsevier, vol. 314(C).
    19. Ganesh Sampatrao Patil & Anwar Mulla & Taha Selim Ustun, 2022. "Impact of Wind Farm Integration on LMP in Deregulated Energy Markets," Sustainability, MDPI, vol. 14(7), pages 1-20, April.
    20. Hare, James & Shi, Xiaofang & Gupta, Shalabh & Bazzi, Ali, 2016. "Fault diagnostics in smart micro-grids: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1114-1124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2657-:d:549412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.