Real Time Security Assessment of the Power System Using a Hybrid Support Vector Machine and Multilayer Perceptron Neural Network Algorithms
Author
Abstract
Suggested Citation
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cheong Kim & Francis Joseph Costello & Kun Chang Lee, 2019. "Integrating Qualitative Comparative Analysis and Support Vector Machine Methods to Reduce Passengers’ Resistance to Biometric E-Gates for Sustainable Airport Operations," Sustainability, MDPI, vol. 11(19), pages 1-22, September.
- Oyeniyi Akeem Alimi & Khmaies Ouahada & Adnan M. Abu-Mahfouz & Suvendi Rimer & Kuburat Oyeranti Adefemi Alimi, 2021. "A Review of Research Works on Supervised Learning Algorithms for SCADA Intrusion Detection and Classification," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
- Ana Maria Mihaela Iordache & Codruța Cornelia Dura & Cristina Coculescu & Claudia Isac & Ana Preda, 2021. "Using Neural Networks in Order to Analyze Telework Adaptability across the European Union Countries: A Case Study of the Most Relevant Scenarios to Occur in Romania," IJERPH, MDPI, vol. 18(20), pages 1-28, October.
- Derya Betul Unsal & Taha Selim Ustun & S. M. Suhail Hussain & Ahmet Onen, 2021. "Enhancing Cybersecurity in Smart Grids: False Data Injection and Its Mitigation," Energies, MDPI, vol. 14(9), pages 1-36, May.
More about this item
Keywords
multilayer perceptron neural network; support vector machine; cyberattacks; optimal power flow; smart grid security; intruder detection system;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3586-:d:244140. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.