IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2645-d549034.html
   My bibliography  Save this article

Void Fraction Prediction Method in Gas–Liquid Flow through Channel Packed with Open-Cell Metal Foams

Author

Listed:
  • Małgorzata Płaczek

    (Department of Process and Environmental Engineering, Faculty of Mechanical Engineering, Opole University of Technology, 5 Mikolajczyka Str, 45-271 Opole, Poland)

  • Roman Dyga

    (Department of Process and Environmental Engineering, Faculty of Mechanical Engineering, Opole University of Technology, 5 Mikolajczyka Str, 45-271 Opole, Poland)

Abstract

This paper reports the results of a study concerned with air–water and air–oil two-phase flow in channels packed with open-cell metal foams. The research was conducted in horizontal channel with an internal diameter of 0.02 m and length of 2.61 m. The analysis applied three metal foams with pore density 20, 30, and 40 PPI and porosity typical for industrial applications, changing in the range of 92–94%. The experimental data were used to develop a new method for predicting void fraction in two-phase gas–liquid flow in channels packed with metal foams. A new gas void fraction calculating method based on drift-flux model was developed. This model gives a correct representation of changes in the gas void fraction value and good prediction accuracy. The average relative error in calculating the air void fraction in two-phase flow is less than 13%, and 86% of experimental points is characterized by an error less than 20%.

Suggested Citation

  • Małgorzata Płaczek & Roman Dyga, 2021. "Void Fraction Prediction Method in Gas–Liquid Flow through Channel Packed with Open-Cell Metal Foams," Energies, MDPI, vol. 14(9), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2645-:d:549034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Junfei & Liu, Zhan & Du, Zhao & Yu, Jiabang & Yang, Xiaohu & Yan, Jinyue, 2021. "Effect of fin-metal foam structure on thermal energy storage: An experimental study," Renewable Energy, Elsevier, vol. 172(C), pages 57-70.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shuai & Yan, Yuying, 2023. "Energy, exergy and economic analysis of ceramic foam-enhanced molten salt as phase change material for medium- and high-temperature thermal energy storage," Energy, Elsevier, vol. 262(PA).
    2. Hu, Haitao & Zhao, Yaxin & Li, Yuhan, 2023. "Research progress on flow and heat transfer characteristics of fluids in metal foams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Jiang, L. & Li, S. & Wang, R.Q. & Fan, Y.B. & Zhang, X.J. & Roskilly, A.P., 2021. "Performance analysis on a hybrid compression-assisted sorption thermal battery for seasonal heat storage in severe cold region," Renewable Energy, Elsevier, vol. 180(C), pages 398-409.
    4. Cui, Wei & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Combined effects of nanoparticles and ultrasonic field on thermal energy storage performance of phase change materials with metal foam," Applied Energy, Elsevier, vol. 309(C).
    5. Ge, Ruihuan & Li, Qi & Li, Chuan & Liu, Qing, 2022. "Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 187(C), pages 829-843.
    6. Liu, Zhan & Liu, Xu & Yang, Shanju & Hooman, Kamel & Yang, Xiaohu, 2021. "Assessment evaluation of a trigeneration system incorporated with an underwater compressed air energy storage," Applied Energy, Elsevier, vol. 303(C).
    7. Liu, Zhan & Liu, Zihui & Liu, Gang & Yang, Xiaohu & Yan, Jinyue, 2022. "Melting assessment on the effect of nonuniform Y-shaped fin upon solid–liquid phase change in a thermal storage tank," Applied Energy, Elsevier, vol. 321(C).
    8. Yu, Yang & Chen, Sheng, 2022. "Utilize mechanical vibration energy for fast thermal responsive PCMs-based energy storage systems: Prototype research by numerical simulation," Renewable Energy, Elsevier, vol. 187(C), pages 974-986.
    9. Zhang, Shuai & Yan, Yuying, 2023. "Evaluation and optimisation of hybrid sensible-latent heat thermal energy storage unit with natural stones to enhance heat transfer," Renewable Energy, Elsevier, vol. 215(C).
    10. Tian, Yang & Liu, Xianglei & Zheng, Hangbin & Xu, Qiao & Zhu, Zhonghui & Luo, Qinyang & Song, Chao & Gao, Ke & Yao, Haichen & Dang, Chunzhuo & Xuan, Yimin, 2022. "Artificial mitochondrion for fast latent heat storage: Experimental study and lattice Boltzmann simulation," Energy, Elsevier, vol. 245(C).
    11. Ferahtia, Seydali & Rezk, Hegazy & Olabi, A.G. & Alhumade, Hesham & Bamufleh, Hisham S. & Doranehgard, Mohammad Hossein & Abdelkareem, Mohammad Ali, 2022. "Optimal techno-economic multi-level energy management of renewable-based DC microgrid for commercial buildings applications," Applied Energy, Elsevier, vol. 327(C).
    12. Juan Zhao & Yifei Bai & Junmei Gao & Tianwei Qiang & Pei Liang, 2022. "Smart Evaluation Index of Roof SHS Suitability," Energies, MDPI, vol. 15(3), pages 1-14, February.
    13. Cui, Wei & Si, Tianyu & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    14. Lu, Shilei & Lin, Quanyi & Liu, Yi & Yue, Lu & Wang, Ran, 2022. "Study on thermal performance improvement technology of latent heat thermal energy storage for building heating," Applied Energy, Elsevier, vol. 323(C).
    15. Huang, Xinyu & Li, Fangfei & Li, Yuanji & Meng, Xiangzhao & Yang, Xiaohu & Sundén, Bengt, 2023. "Optimization of melting performance of a heat storage tank under rotation conditions: Based on taguchi design and response surface method," Energy, Elsevier, vol. 271(C).
    16. Ding, Zhixiong & Wu, Wei & Leung, Michael K.H., 2022. "On the rational development of advanced thermochemical thermal batteries for short-term and long-term energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2645-:d:549034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.