IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2571-d546729.html
   My bibliography  Save this article

Energy Efficiency Retrofits in Commercial Buildings: An Environmental, Financial, and Technical Analysis of Case Studies in Thailand

Author

Listed:
  • Christopher Charles Seeley

    (Department of Energy, Environment and Climate Change, School of Environment, Resources and Development (SERD), Asian Institute of Technology (AIT), 58 Moo 9, Paholyothin Highway Klong Luang, Pathumthani 12120, Thailand)

  • Shobhakar Dhakal

    (Department of Energy, Environment and Climate Change, School of Environment, Resources and Development (SERD), Asian Institute of Technology (AIT), 58 Moo 9, Paholyothin Highway Klong Luang, Pathumthani 12120, Thailand)

Abstract

In the rapidly growing economies of Southeast Asia, energy consumption and energy costs in buildings continue to increase. Over the past decade, energy consumption from the commercial building sector in Thailand has increased at an average of 4% per annum and currently represents over 30% of total electricity consumption, second only to the industrial sector. Buildings that exist today will continue to represent most of both energy and greenhouse gas (GHG) emissions from the built environment, with newly constructed buildings representing only a small additional portion. This paper analyzes the environmental, technical, and financial characteristics of energy efficiency retrofit activities in commercial buildings in Thailand through detailed case studies of forty-two projects undertaken over the past 8 years. Our findings suggest that retrofits provide significant opportunities to reduce energy use, energy costs, and GHG emissions while also validating the economic feasibility of investments into such retrofit activities. Through this detailed analysis of past retrofit projects in Thailand, we found that the marginal abatement costs (MAC) relating to the key energy conservation measures (ECM) implemented within these retrofit projects all have negative costs. However, although these findings demonstrate positive economics and should be sufficient to instigate widespread adoption, in reality, this is not taking place. It is evident that greater public policy and leadership are needed to stimulate growth in the building retrofit sector to take advantage of the opportunities and benefits that building retrofits offer.

Suggested Citation

  • Christopher Charles Seeley & Shobhakar Dhakal, 2021. "Energy Efficiency Retrofits in Commercial Buildings: An Environmental, Financial, and Technical Analysis of Case Studies in Thailand," Energies, MDPI, vol. 14(9), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2571-:d:546729
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Sang Hoon & Hong, Tianzhen & Piette, Mary Ann & Sawaya, Geof & Chen, Yixing & Taylor-Lange, Sarah C., 2015. "Accelerating the energy retrofit of commercial buildings using a database of energy efficiency performance," Energy, Elsevier, vol. 90(P1), pages 738-747.
    2. Amir R. Hessami & Vahid Faghihi & Amy Kim & David N. Ford, 2020. "Evaluating planning strategies for prioritizing projects in sustainability improvement programs," Construction Management and Economics, Taylor & Francis Journals, vol. 38(8), pages 726-738, August.
    3. Gary Stuggins & Alexander Sharabaroff & Yadviga Semikolenova, 2013. "Energy Efficiency : Lessons Learned from Success Stories," World Bank Publications - Books, The World Bank Group, number 12236.
    4. Iwaro, Joseph & Mwasha, Abraham, 2010. "A review of building energy regulation and policy for energy conservation in developing countries," Energy Policy, Elsevier, vol. 38(12), pages 7744-7755, December.
    5. Vogt-Schilb, Adrien & Hallegatte, Stephane & de Gouvello Christophe, 2014. "Long-term mitigation strategies and marginal abatement cost curves : a case study on Brazil," Policy Research Working Paper Series 6808, The World Bank.
    6. Job Taminiau & John Byrne & Daniel Sanchez Carretero & Soojin Shin & Jing Xu, 2021. "Risk Mitigation in Energy Efficiency Retrofit Projects Using Automated Performance Control," Chapters, in: Joseph Nyangon & John Byrne (ed.), Sustainable Energy Investment - Technical, Market and Policy Innovations to Address Risk, IntechOpen.
    7. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    8. Jackson, Tim, 1991. "Least-cost greenhouse planning supply curves for global warming abatement," Energy Policy, Elsevier, vol. 19(1), pages 35-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seunghoon Nam & Jaemoon Kim & Duwhan Lee, 2021. "Current Status of Aged Public Buildings and Effect Analysis Prediction of Green Remodeling in South Korea," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    2. Fang, Zigeng & Yan, Jiayi & Lu, Qiuchen & Chen, Long & Yang, Pu & Tang, Junqing & Jiang, Feng & Broyd, Tim & Hong, Jingke, 2023. "A systematic literature review of carbon footprint decision-making approaches for infrastructure and building projects," Applied Energy, Elsevier, vol. 335(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Mengxue & Lai, Joseph, 2020. "Review on carbon emissions of commercial buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Picallo-Perez, Ana & Sala-Lizarraga, José M. & Portillo-Valdes, Luis, 2022. "Development of a tool based on thermoeconomics for control and diagnosis building thermal facilities," Energy, Elsevier, vol. 239(PD).
    3. Garg, Amit & Maheshwari, Jyoti & Shukla, P.R. & Rawal, Rajan, 2017. "Energy appliance transformation in commercial buildings in India under alternate policy scenarios," Energy, Elsevier, vol. 140(P1), pages 952-965.
    4. Rachael Sherman & Hariharan Naganathan & Kristen Parrish, 2021. "Energy Savings Results from Small Commercial Building Retrofits in the US," Energies, MDPI, vol. 14(19), pages 1-16, September.
    5. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    6. Drago, Carlo & Gatto, Andrea, 2022. "Policy, regulation effectiveness, and sustainability in the energy sector: A worldwide interval-based composite indicator," Energy Policy, Elsevier, vol. 167(C).
    7. Seyedmohammadreza Heibati & Wahid Maref & Hamed H. Saber, 2019. "Assessing the Energy and Indoor Air Quality Performance for a Three-Story Building Using an Integrated Model, Part One: The Need for Integration," Energies, MDPI, vol. 12(24), pages 1-18, December.
    8. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    9. Sumin Kim & Benson Teck Heng Lim & Bee Lan Oo, 2022. "Energy Consumption and Carbon Emissions of Mandatory Green Certified Offices in Australia: Evidence and Lessons Learnt across 2011–2020," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    10. Oskar Lecuyer & Adrien Vogt-Schilb, 2013. "Assessing and ordering investments in polluting fossil-fueled and zero-carbon capital," CIRED Working Papers hal-00850680, HAL.
    11. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    12. Vogt-Schilb, Adrien & Hallegatte, Stéphane, 2014. "Marginal abatement cost curves and the optimal timing of mitigation measures," Energy Policy, Elsevier, vol. 66(C), pages 645-653.
    13. Ye, Zhongnan & Cheng, Kuangly & Hsu, Shu-Chien & Wei, Hsi-Hsien & Cheung, Clara Man, 2021. "Identifying critical building-oriented features in city-block-level building energy consumption: A data-driven machine learning approach," Applied Energy, Elsevier, vol. 301(C).
    14. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
    15. Meinrenken, Christoph J. & Mehmani, Ali, 2019. "Concurrent optimization of thermal and electric storage in commercial buildings to reduce operating cost and demand peaks under time-of-use tariffs," Applied Energy, Elsevier, vol. 254(C).
    16. Gruber, J.K. & Huerta, F. & Matatagui, P. & Prodanović, M., 2015. "Advanced building energy management based on a two-stage receding horizon optimization," Applied Energy, Elsevier, vol. 160(C), pages 194-205.
    17. Yue, Xiufeng & Deane, J.P. & O'Gallachoir, Brian & Rogan, Fionn, 2020. "Identifying decarbonisation opportunities using marginal abatement cost curves and energy system scenario ensembles," Applied Energy, Elsevier, vol. 276(C).
    18. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    19. Kesicki, Fabian, 2013. "What are the key drivers of MAC curves? A partial-equilibrium modelling approach for the UK," Energy Policy, Elsevier, vol. 58(C), pages 142-151.
    20. Wang, Tao & Seo, Seongwon & Liao, Pin-Chao & Fang, Dongping, 2016. "GHG emission reduction performance of state-of-the-art green buildings: Review of two case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 484-493.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2571-:d:546729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.