IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2074-d532556.html
   My bibliography  Save this article

Efficient Optical Limiting in Carbon-Nanohorn Suspensions

Author

Listed:
  • Elisa Sani

    (Istituto Nazionale di Ottica (CNR-INO), Largo Enrico Fermi 6, I-50125 Firenze, Italy)

  • Nicolò Papi

    (Istituto Nazionale di Ottica (CNR-INO), Largo Enrico Fermi 6, I-50125 Firenze, Italy)

  • Luca Mercatelli

    (Istituto Nazionale di Ottica (CNR-INO), Largo Enrico Fermi 6, I-50125 Firenze, Italy)

  • Aldo Dell’Oro

    (INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, I-50125 Firenze, Italy)

Abstract

Nonlinear optical properties of aqueous dispersions of single-wall carbon nanohorns (SWCNH) are investigated by a simple and original technique, relating nonlinear transmittance measurements with semi-empirical model fitting and allowing to identify the dominant nonlinear mechanism. The nanofluids shown a particularly strong optical limiting under irradiation by nanosecond laser pulses at 355, 532 and 1064 nm, much stronger than that previously reported in SWCNHs with smaller aggregate size. The effect is more relevant at 355 nm, where a nearly ideal optical limiting behavior with output energy practically independent on the input one is obtained, and it is attributed to the massive production of bubbles under the effect of light irradiation. This result opens interesting perspectives for the use of SWNCH-based suspensions for smart materials applications and green energy.

Suggested Citation

  • Elisa Sani & Nicolò Papi & Luca Mercatelli & Aldo Dell’Oro, 2021. "Efficient Optical Limiting in Carbon-Nanohorn Suspensions," Energies, MDPI, vol. 14(8), pages 1-9, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2074-:d:532556
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2074/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2074/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sani, Elisa & Papi, Nicolò & Mercatelli, Luca & Żyła, Gaweł, 2018. "Graphite/diamond ethylene glycol-nanofluids for solar energy applications," Renewable Energy, Elsevier, vol. 126(C), pages 692-698.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1-27, March.
    2. Kuzmenkov, D.M. & Delov, M.I. & Zeynalyan, K. & Struchalin, P.G. & Alyaev, S. & He, Y. & Kutsenko, K.V. & Balakin, B.V., 2020. "Solar steam generation in fine dispersions of graphite particles," Renewable Energy, Elsevier, vol. 161(C), pages 265-277.
    3. Dmitrii M. Kuzmenkov & Pavel G. Struchalin & Andrey V. Olkhovskii & Vladimir S. Yunin & Kirill V. Kutsenko & Boris V. Balakin, 2021. "Solar-Driven Desalination Using Nanoparticles," Energies, MDPI, vol. 14(18), pages 1-11, September.
    4. Gimeno-Furio, A. & Hernandez, L. & Navarrete, N. & Mondragon, R., 2019. "Characterisation study of a thermal oil-based carbon black solar nanofluid," Renewable Energy, Elsevier, vol. 140(C), pages 493-500.
    5. Gimeno-Furió, Alexandra & Martínez-Cuenca, Raúl & Mondragón, Rosa & Gasulla, Antonio Fabián Vela & Doñate-Buendía, Carlos & Mínguez-Vega, Gladys & Hernández, Leonor, 2020. "Optical characterisation and photothermal conversion efficiency of a water-based carbon nanofluid for direct solar absorption applications," Energy, Elsevier, vol. 212(C).
    6. Choi, Tae Jong & Kim, Sung Hyoun & Jang, Seok Pil & Lin, Lingnan & Kedzierski, M.A., 2020. "Aqueous nanofluids containing paraffin-filled MWCNTs for improving effective specific heat and extinction coefficient," Energy, Elsevier, vol. 210(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2074-:d:532556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.