IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1790-d522890.html
   My bibliography  Save this article

Enhancement of Food Waste Management and Its Environmental Consequences

Author

Listed:
  • Jan den Boer

    (Department of Applied Bioeconomy, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland)

  • Gudrun Obersteiner

    (Department of Water, Atmosphere and Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, 1190 Vienna, Austria)

  • Sebastian Gollnow

    (Department of Water, Atmosphere and Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, 1190 Vienna, Austria)

  • Emilia den Boer

    (Chair of Environmental Protection Engineering, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Renata Bodnárné Sándor

    (Division for SMART Systems (BAY-SMART), Bay Zoltán Nonprofit Ltd. for Applied Research, 3519 Miskolc, Hungary)

Abstract

This paper assesses the potential environmental effects of the optimization of the kitchen waste management in Opole. The separate collection of kitchen waste is improved by distribution of separate collection kits consisting of an in-home bin and 10 L biodegradable bags. The surplus of collected kitchen waste is diverted from treatment in a mechanical-biological pretreatment (MBP) along with the residual waste to anaerobic digestion (AD) with the biowaste. This has positive effects on European and Polish goals, ambitions, and targets, such as (i) increasing the level of renewables in the primary energy supply, (ii) decreasing the level of greenhouse gas (GHG) emissions, (iii) increasing the level of preparation for reuse and recycling of municipal waste. The environmental effects of 1 ton additionally separately collected and treated kitchen waste are determined by using life cycle assessment. It was shown that in all selected impact categories (global warming potential, marine eutrophication potential, acidification potential, and ozone depletion potential) a clear environmental benefit can be achieved. These benefits are mainly caused by the avoided emissions of electricity and heat from the Polish production mix, which are substituted by energy generation from biogas combustion. Optimization of the waste management system by diversion of kitchen waste from mechanical-biological pretreatment to anaerobic digestion can lead to considerable saving of 448 kg CO 2 -eq/t of waste diverted. With an estimated optimization potential for the demonstration site of 40 kg/inh·year for the city of Opole, this would lead to 680,000 t CO 2 -eq savings per year for the whole of Poland. The sensitivity analysis showed that with a choice for cleaner energy sources the results would, albeit lower, show a significant savings potential.

Suggested Citation

  • Jan den Boer & Gudrun Obersteiner & Sebastian Gollnow & Emilia den Boer & Renata Bodnárné Sándor, 2021. "Enhancement of Food Waste Management and Its Environmental Consequences," Energies, MDPI, vol. 14(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1790-:d:522890
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1790/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1790/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muench, Stefan & Guenther, Edeltraud, 2013. "A systematic review of bioenergy life cycle assessments," Applied Energy, Elsevier, vol. 112(C), pages 257-273.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Christian Aragon-Briceño & Mateusz Wnukowski & Artur Pożarlik & Lukasz Niedzwiecki & Marcin Baranowski & Michał Czerep & Przemysław Seruga & Hali, 2021. "Cascade Membrane System for Separation of Water and Organics from Liquid By-Products of HTC of the Agricultural Digestate—Evaluation of Performance," Energies, MDPI, vol. 14(16), pages 1-18, August.
    2. Ana Kodba & Tomislav Pukšec & Neven Duić, 2023. "Analysis of Specific Greenhouse Gas Emissions Savings from Biogas Production Based on Agricultural Residues and Industrial By-Products," Energies, MDPI, vol. 16(9), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Busola D. Akintayo & Oluwafemi E. Ige & Olubayo M. Babatunde & Oludolapo A. Olanrewaju, 2023. "Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach," Energies, MDPI, vol. 16(18), pages 1-18, September.
    2. Sastre, Carlos M. & Carrasco, Juan & Barro, Ruth & González-Arechavala, Yolanda & Maletta, Emiliano & Santos, Ana M. & Ciria, Pilar, 2016. "Improving bioenergy sustainability evaluations by using soil nitrogen balance coupled with life cycle assessment: A case study for electricity generated from rye biomass," Applied Energy, Elsevier, vol. 179(C), pages 847-863.
    3. Christian Moretti & Blanca Corona & Robert Edwards & Martin Junginger & Alberto Moro & Matteo Rocco & Li Shen, 2020. "Reviewing ISO Compliant Multifunctionality Practices in Environmental Life Cycle Modeling," Energies, MDPI, vol. 13(14), pages 1-24, July.
    4. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    5. Mohammadrezaei, Rashed & Zareei, Samira & Behroozi- Khazaei, Nasser, 2018. "Optimum mixing rate in biogas reactors: Energy balance calculations and computational fluid dynamics simulation," Energy, Elsevier, vol. 159(C), pages 54-60.
    6. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    7. Hadi Karimi & Sandra D. Ekşioğlu & Michael Carbajales-Dale, 2021. "A biobjective chance constrained optimization model to evaluate the economic and environmental impacts of biopower supply chains," Annals of Operations Research, Springer, vol. 296(1), pages 95-130, January.
    8. Jozami, Emiliano & Mele, Fernando D & Piastrellini, Roxana & Civit, Bárbara M & Feldman, Susana R, 2022. "Life cycle assessment of bioenergy from lignocellulosic herbaceous biomass: The case study of Spartina argentinensis," Energy, Elsevier, vol. 254(PA).
    9. Maneesh Kumar Mediboyina & Fionnuala Murphy, 2024. "Environmental Assessment of a Waste-to-Energy Cascading System Integrating Forestry Residue Pyrolysis and Poultry Litter Anaerobic Digestion," Energies, MDPI, vol. 17(7), pages 1-15, March.
    10. Kis, Zoltán & Pandya, Nikul & Koppelaar, Rembrandt H.E.M., 2018. "Electricity generation technologies: Comparison of materials use, energy return on investment, jobs creation and CO2 emissions reduction," Energy Policy, Elsevier, vol. 120(C), pages 144-157.
    11. Arent, Doug & Pless, Jacquelyn & Mai, Trieu & Wiser, Ryan & Hand, Maureen & Baldwin, Sam & Heath, Garvin & Macknick, Jordan & Bazilian, Morgan & Schlosser, Adam & Denholm, Paul, 2014. "Implications of high renewable electricity penetration in the U.S. for water use, greenhouse gas emissions, land-use, and materials supply," Applied Energy, Elsevier, vol. 123(C), pages 368-377.
    12. Schröders, Sarah & Allelein, Hans-Josef, 2018. "Energy economic evaluation of process heat supply by solar tower and high temperature reactor based on the ammonia production process," Applied Energy, Elsevier, vol. 212(C), pages 622-639.
    13. Liu, Huacai & Huang, Yanqin & Yuan, Hongyou & Yin, Xiuli & Wu, Chuangzhi, 2018. "Life cycle assessment of biofuels in China: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 301-322.
    14. Claudiu Cicea & Corina Marinescu & Nicolae Pintilie, 2021. "New Methodological Approach for Performance Assessment in the Bioenergy Field," Energies, MDPI, vol. 14(4), pages 1-19, February.
    15. Wang, Tiejun & Qiu, Songbai & Weng, Yujing & Chen, Lungang & Liu, Qiying & Long, Jinxing & Tan, Jin & Zhang, Qing & Zhang, Qi & Ma, Longlong, 2015. "Liquid fuel production by aqueous phase catalytic transformation of biomass for aviation," Applied Energy, Elsevier, vol. 160(C), pages 329-335.
    16. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Azapagic, Adisa, 2019. "Environmental sustainability of small-scale biomass power technologies for agricultural communities in developing countries," Renewable Energy, Elsevier, vol. 141(C), pages 493-506.
    17. Shemfe, Mobolaji B. & Whittaker, Carly & Gu, Sai & Fidalgo, Beatriz, 2016. "Comparative evaluation of GHG emissions from the use of Miscanthus for bio-hydrocarbon production via fast pyrolysis and bio-oil upgrading," Applied Energy, Elsevier, vol. 176(C), pages 22-33.
    18. Wei, Rufei & Zheng, Xueting & Zhu, Yulong & Feng, Shanghuan & Long, Hongming & Xu, Chunbao Charles, 2024. "Hydrothermal bio-char as a foaming agent for electric arc furnace steelmaking: Performance and mechanism," Applied Energy, Elsevier, vol. 353(PA).
    19. Maria Pergola & Angelo Rita & Alfonso Tortora & Maria Castellaneta & Marco Borghetti & Antonio Sergio De Franchi & Antonio Lapolla & Nicola Moretti & Giovanni Pecora & Domenico Pierangeli & Luigi Toda, 2020. "Identification of Suitable Areas for Biomass Power Plant Construction through Environmental Impact Assessment of Forest Harvesting Residues Transportation," Energies, MDPI, vol. 13(11), pages 1-16, May.
    20. Levasseur, Annie & Bahn, Olivier & Beloin-Saint-Pierre, Didier & Marinova, Mariya & Vaillancourt, Kathleen, 2017. "Assessing butanol from integrated forest biorefinery: A combined techno-economic and life cycle approach," Applied Energy, Elsevier, vol. 198(C), pages 440-452.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1790-:d:522890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.