IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1762-d522000.html
   My bibliography  Save this article

Integrated Optimization of Routing and Energy Management for Electric Vehicles in Delivery Scheduling

Author

Listed:
  • Lixing Wang

    (School of Computers and Engineering, Northeastern University, Shenyang 110000, China
    Laboratory for Soft Machines & Electronics, School of Packaging, Michigan State University, East Lansing, MI 48824, USA)

  • Zhenning Wu

    (School of Computers and Engineering, Northeastern University, Shenyang 110000, China)

  • Changyong Cao

    (Laboratory for Soft Machines & Electronics, School of Packaging, Michigan State University, East Lansing, MI 48824, USA)

Abstract

At present, electric vehicles (EVs) are attracting increasing attention and have great potential for replacing fossil-fueled vehicles, especially for logistics applications. However, energy management for EVs is essential for them to be advantageous owing to their limitations with regard to battery capacity and recharging times. Therefore, inefficiencies can be expected for EV-based logistical operations without an energy management plan, which is not necessarily considered in traditional routing exercises. In this study, for the logistics application of EVs to manage energy and schedule the vehicle route, a system is proposed. The system comprises two parts: (1) a case-based reasoning subsystem to forecast the energy consumption and travel time for each route section, and (2) a genetic algorithm to optimize vehicle routing with an energy consumption situation as a new constraint. A dynamic adjustment algorithm is also adopted to achieve a rapid response to accidents in which the vehicles might be involved. Finally, a simulation is performed to test the system by adjusting the data from the vehicle routing problem with time windows. Solomon benchmarks are used for the validations. The analysis results show that the proposed vehicle management system is more economical than the traditional method.

Suggested Citation

  • Lixing Wang & Zhenning Wu & Changyong Cao, 2021. "Integrated Optimization of Routing and Energy Management for Electric Vehicles in Delivery Scheduling," Energies, MDPI, vol. 14(6), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1762-:d:522000
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1762/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1762/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheung, Bernard K.-S. & Choy, K.L. & Li, Chung-Lun & Shi, Wenzhong & Tang, Jian, 2008. "Dynamic routing model and solution methods for fleet management with mobile technologies," International Journal of Production Economics, Elsevier, vol. 113(2), pages 694-705, June.
    2. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    3. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    4. Tarantilis, C.D. & Kiranoudis, C.T., 2007. "A flexible adaptive memory-based algorithm for real-life transportation operations: Two case studies from dairy and construction sector," European Journal of Operational Research, Elsevier, vol. 179(3), pages 806-822, June.
    5. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert, 2019. "The electric vehicle routing problem with energy consumption uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 225-255.
    6. Alqahtani, Mohammed & Hu, Mengqi, 2020. "Integrated energy scheduling and routing for a network of mobile prosumers," Energy, Elsevier, vol. 200(C).
    7. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    8. Zhang, Shuai & Gajpal, Yuvraj & Appadoo, S.S. & Abdulkader, M.M.S., 2018. "Electric vehicle routing problem with recharging stations for minimizing energy consumption," International Journal of Production Economics, Elsevier, vol. 203(C), pages 404-413.
    9. Jie, Wanchen & Yang, Jun & Zhang, Min & Huang, Yongxi, 2019. "The two-echelon capacitated electric vehicle routing problem with battery swapping stations: Formulation and efficient methodology," European Journal of Operational Research, Elsevier, vol. 272(3), pages 879-904.
    10. Angel Alejandro Juan & Carlos Alberto Mendez & Javier Faulin & Jesica De Armas & Scott Erwin Grasman, 2016. "Electric Vehicles in Logistics and Transportation: A Survey on Emerging Environmental, Strategic, and Operational Challenges," Energies, MDPI, vol. 9(2), pages 1-21, January.
    11. Schneider, M. & Stenger, A. & Goeke, D., 2014. "The Electric Vehicle Routing Problem with Time Windows and Recharging Stations," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62382, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daud Mustafa Minhas & Josef Meiers & Georg Frey, 2022. "Electric Vehicle Battery Storage Concentric Intelligent Home Energy Management System Using Real Life Data Sets," Energies, MDPI, vol. 15(5), pages 1-29, February.
    2. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
    3. João Pedro F. Trovão & Minh Cao Ta, 2022. "Electric Vehicle Efficient Power and Propulsion Systems," Energies, MDPI, vol. 15(11), pages 1-4, May.
    4. Andrzej Jezierski & Cezary Mańkowski & Rafał Śpiewak, 2021. "Energy Savings Analysis in Logistics of a Wind Farm Repowering Process: A Case Study," Energies, MDPI, vol. 14(17), pages 1-23, September.
    5. Wang, Ruiting & Keyantuo, Patrick & Zeng, Teng & Sandoval, Jairo & Vishwanath, Aashrith & Borhan, Hoseinali & Moura, Scott, 2024. "Robust routing for a mixed fleet of heavy-duty trucks with pickup and delivery under energy consumption uncertainty," Applied Energy, Elsevier, vol. 368(C).
    6. Wojciech Cieslik & Weronika Antczak, 2023. "Research of Load Impact on Energy Consumption in an Electric Delivery Vehicle Based on Real Driving Conditions: Guidance for Electrification of Light-Duty Vehicle Fleet," Energies, MDPI, vol. 16(2), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erfan Ghorbani & Mahdi Alinaghian & Gevork. B. Gharehpetian & Sajad Mohammadi & Guido Perboli, 2020. "A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification," Sustainability, MDPI, vol. 12(21), pages 1-71, October.
    2. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    3. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    4. Themistoklis Stamadianos & Nikolaos A. Kyriakakis & Magdalene Marinaki & Yannis Marinakis, 2023. "Routing Problems with Electric and Autonomous Vehicles: Review and Potential for Future Research," SN Operations Research Forum, Springer, vol. 4(2), pages 1-34, June.
    5. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    6. Azra Ghobadi & Mohammad Fallah & Reza Tavakkoli-Moghaddam & Hamed Kazemipoor, 2022. "A Fuzzy Two-Echelon Model to Optimize Energy Consumption in an Urban Logistics Network with Electric Vehicles," Sustainability, MDPI, vol. 14(21), pages 1-31, October.
    7. Virginia Casella & Daniel Fernandez Valderrama & Giulio Ferro & Riccardo Minciardi & Massimo Paolucci & Luca Parodi & Michela Robba, 2022. "Towards the Integration of Sustainable Transportation and Smart Grids: A Review on Electric Vehicles’ Management," Energies, MDPI, vol. 15(11), pages 1-23, May.
    8. Ana Bricia Galindo-Muro & Riccardo Cespi & Stephany Isabel Vallarta-Serrano, 2023. "Applications of Electric Vehicles in Instant Deliveries," Energies, MDPI, vol. 16(4), pages 1-18, February.
    9. Tengkuo Zhu & Stephen D. Boyles & Avinash Unnikrishnan, 2024. "Battery Electric Vehicle Traveling Salesman Problem with Drone," Networks and Spatial Economics, Springer, vol. 24(1), pages 49-97, March.
    10. Leandro do C. Martins & Rafael D. Tordecilla & Juliana Castaneda & Angel A. Juan & Javier Faulin, 2021. "Electric Vehicle Routing, Arc Routing, and Team Orienteering Problems in Sustainable Transportation," Energies, MDPI, vol. 14(16), pages 1-30, August.
    11. Wang, Mengtong & Miao, Lixin & Zhang, Canrong, 2021. "A branch-and-price algorithm for a green location routing problem with multi-type charging infrastructure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    12. Yanfei Zhu & Chunhui Li & Kwang Y. Lee, 2022. "The NR-EGA for the EVRP Problem with the Electric Energy Consumption Model," Energies, MDPI, vol. 15(10), pages 1-12, May.
    13. Wenzhu Liao & Lin Liu & Jiazhuo Fu, 2019. "A Comparative Study on the Routing Problem of Electric and Fuel Vehicles Considering Carbon Trading," IJERPH, MDPI, vol. 16(17), pages 1-25, August.
    14. Tahami, Hesamoddin & Rabadi, Ghaith & Haouari, Mohamed, 2020. "Exact approaches for routing capacitated electric vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    15. Amin Aghalari & Darweesh Ehssan Salamah & Carlos Marino & Mohammad Marufuzzaman, 2023. "Electric vehicles fast charger location-routing problem under ambient temperature," Annals of Operations Research, Springer, vol. 324(1), pages 721-759, May.
    16. Wei Xu & Chenghao Zhang & Ming Cheng & Yucheng Huang, 2022. "Electric Vehicle Routing Problem with Simultaneous Pickup and Delivery: Mathematical Modeling and Adaptive Large Neighborhood Search Heuristic Method," Energies, MDPI, vol. 15(23), pages 1-25, December.
    17. Su, Yue & Dupin, Nicolas & Parragh, Sophie N. & Puchinger, Jakob, 2024. "A Branch-and-Price algorithm for the electric autonomous Dial-A-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    18. Yong Wang & Jingxin Zhou & Yaoyao Sun & Xiuwen Wang & Jiayi Zhe & Haizhong Wang, 2022. "Electric Vehicle Charging Station Location-Routing Problem with Time Windows and Resource Sharing," Sustainability, MDPI, vol. 14(18), pages 1-31, September.
    19. Singh, Nitish & Dang, Quang-Vinh & Akcay, Alp & Adan, Ivo & Martagan, Tugce, 2022. "A matheuristic for AGV scheduling with battery constraints," European Journal of Operational Research, Elsevier, vol. 298(3), pages 855-873.
    20. Liu, Dan & Yan, Pengyu & Pu, Ziyuan & Wang, Yinhai & Kaisar, Evangelos I., 2021. "Hybrid artificial immune algorithm for optimizing a Van-Robot E-grocery delivery system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1762-:d:522000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.