IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1662-d518886.html
   My bibliography  Save this article

Numerical Study of Vibration Characteristics for Sensor Membrane in Transformer Oil

Author

Listed:
  • Wenrong Si

    (State Grid Shanghai Electrical Power Research Institute, Shanghai 200437, China)

  • Weiqiang Yao

    (State Grid Shanghai Electrical Power Research Institute, Shanghai 200437, China)

  • Hong Guan

    (State Grid Shanghai Electrical Power Research Institute, Shanghai 200437, China)

  • Chenzhao Fu

    (State Grid Shanghai Electrical Power Research Institute, Shanghai 200437, China)

  • Yiting Yu

    (MOE Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi’an 710072, China)

  • Shiwei Su

    (MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Jian Yang

    (MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

Membrane is the most important element of extrinsic Fabry-Perot interferometer sensors. Studying the relationship between working medium viscosity and membrane vibration characteristics are critical to the sensor design because the transformer oil viscosity will cause viscous loss during membrane vibration. The numerical investigation of membrane vibration characteristics in transformer oil is performed based on the finite element method. Besides, the effect of energy loss caused by viscosity is examined. It is firstly showed that the membrane has the highest sensitivity for the first-order vibration mode, and the transformer oil reduces the fundamental frequency by 60%. Subsequently, when viscosity and heat loss are considered, the amplitude is less than one-fifth of that without energy loss. The viscosity has a more significant effect on the velocity and temperature fields when the vibration frequency is close to the natural frequency. Finally, viscosity has a remarkable impact on the time domain response. Mechanical energy is converted into thermal energy during the vibration and the amplitude will gradually decrease with time. The effect of energy loss caused by viscosity on the membrane vibration characteristics is revealed, which would be important for an oil-immersed membrane design.

Suggested Citation

  • Wenrong Si & Weiqiang Yao & Hong Guan & Chenzhao Fu & Yiting Yu & Shiwei Su & Jian Yang, 2021. "Numerical Study of Vibration Characteristics for Sensor Membrane in Transformer Oil," Energies, MDPI, vol. 14(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1662-:d:518886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1662/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1662/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ana C. N. Pardauil & Thiago P. Nascimento & Marcelo R. S. Siqueira & Ubiratan H. Bezerra & Werbeston D. Oliveira, 2020. "Combined Approach Using Clustering-Random Forest to Evaluate Partial Discharge Patterns in Hydro Generators," Energies, MDPI, vol. 13(22), pages 1-18, November.
    2. Franciszek Witos & Aneta Olszewska & Zbigniew Opilski & Agnieszka Lisowska-Lis & Grzegorz Szerszeń, 2020. "Application of Acoustic Emission and Thermal Imaging to Test Oil Power Transformers," Energies, MDPI, vol. 13(22), pages 1-20, November.
    3. Tinghao Yan & Chuanbo Ren & Jilei Zhou & Sujuan Shao, 2020. "The Study on Vibration Reduction of Nonlinear Time-Delay Dynamic Absorber under External Excitation," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, March.
    4. Maciej Zdanowski, 2020. "Streaming Electrification Phenomenon of Electrical Insulating Oils for Power Transformers," Energies, MDPI, vol. 13(12), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciej Zdanowski, 2022. "Streaming Electrification of C 60 Fullerene Doped Insulating Liquids for Power Transformers Applications," Energies, MDPI, vol. 15(7), pages 1-14, March.
    2. Franciszek Witos & Aneta Olszewska, 2023. "Investigation of Partial Discharges within Power Oil Transformers by Acoustic Emission," Energies, MDPI, vol. 16(9), pages 1-20, April.
    3. Dariusz Zmarzły & Paweł Frącz, 2021. "Measurement of Dielectric Liquid Electrification in the Shuttle System with Two Parallel Electrodes," Energies, MDPI, vol. 14(4), pages 1-16, February.
    4. Stefan Wolny & Adam Krotowski, 2020. "Analysis of Polarization and Depolarization Currents of Samples of NOMEX ® 910 Cellulose–Aramid Insulation Impregnated with Mineral Oil," Energies, MDPI, vol. 13(22), pages 1-18, November.
    5. Ramon C. F. Araújo & Rodrigo M. S. de Oliveira & Fabrício J. B. Barros, 2022. "Automatic PRPD Image Recognition of Multiple Simultaneous Partial Discharge Sources in On-Line Hydro-Generator Stator Bars," Energies, MDPI, vol. 15(1), pages 1-26, January.
    6. Marco Bindi & Maria Cristina Piccirilli & Antonio Luchetta & Francesco Grasso, 2023. "A Comprehensive Review of Fault Diagnosis and Prognosis Techniques in High Voltage and Medium Voltage Electrical Power Lines," Energies, MDPI, vol. 16(21), pages 1-37, October.
    7. Maciej Zdanowski, 2020. "Electrostatic Charging Tendency Analysis Concerning Retrofilling Power Transformers with Envirotemp FR3 Natural Ester," Energies, MDPI, vol. 13(17), pages 1-11, August.
    8. Maciej Zdanowski, 2020. "Streaming Electrification of Nycodiel 1255 Synthetic Ester and Trafo EN Mineral Oil Mixtures by Using Rotating Disc Method," Energies, MDPI, vol. 13(23), pages 1-14, November.
    9. Jonathan dos Santos Cruz & Fabiano Fruett & Renato da Rocha Lopes & Fabio Luiz Takaki & Claudia de Andrade Tambascia & Eduardo Rodrigues de Lima & Mateus Giesbrecht, 2022. "Partial Discharges Monitoring for Electric Machines Diagnosis: A Review," Energies, MDPI, vol. 15(21), pages 1-31, October.
    10. Adam Krotowski & Stefan Wolny, 2022. "Analysis of Polarization and Depolarization Currents of Samples of NOMEX ® 910 Cellulose–Aramid Insulation Impregnated with Synthetic Ester," Energies, MDPI, vol. 15(9), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1662-:d:518886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.