IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5955-d445242.html
   My bibliography  Save this article

Application of Acoustic Emission and Thermal Imaging to Test Oil Power Transformers

Author

Listed:
  • Franciszek Witos

    (Department of Optoelectronics, Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Aneta Olszewska

    (Department of Optoelectronics, Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Zbigniew Opilski

    (Department of Optoelectronics, Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Agnieszka Lisowska-Lis

    (Department of Electronics and Telecommunications, University of Applied Sciences in Tarnow, 33-100 Tarnow, Poland)

  • Grzegorz Szerszeń

    (Department of Electronics and Telecommunications, University of Applied Sciences in Tarnow, 33-100 Tarnow, Poland)

Abstract

In this paper, the research methodology and the results of the analysis carried out using the acoustic emission (AE) and thermal imaging for a selected oil power transformer are presented. The basis for the research, by means of the AE method, was the author’s patented research method. The AE descriptor maps on the side walls of the tested transformer along with the location of areas with increased AE activity and an analysis of the properties of AE signals recorded at the measurement points located in these areas have been performed. The results showed no partial discharges that could threaten further operation of the tested transformer as well as three areas where increased magnetoacoustic emission occurred. Thermal imaging studies were carried out in the 7.5 μm < λ < 13 μm band. Three areas were located on the calculated thermograms: the entire upper surface of the transformer tank and two areas on the side walls of the tested transformer in which increased IR radiation occurred. The results of the analysis of the research results for the two methods correspond with each other, having a common part, and complement each other giving a broader description of studied phenomena.

Suggested Citation

  • Franciszek Witos & Aneta Olszewska & Zbigniew Opilski & Agnieszka Lisowska-Lis & Grzegorz Szerszeń, 2020. "Application of Acoustic Emission and Thermal Imaging to Test Oil Power Transformers," Energies, MDPI, vol. 13(22), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5955-:d:445242
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5955/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5955/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wojciech Sikorski & Krzysztof Walczak & Wieslaw Gil & Cyprian Szymczak, 2020. "On-Line Partial Discharge Monitoring System for Power Transformers Based on the Simultaneous Detection of High Frequency, Ultra-High Frequency, and Acoustic Emission Signals," Energies, MDPI, vol. 13(12), pages 1-37, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenrong Si & Weiqiang Yao & Hong Guan & Chenzhao Fu & Yiting Yu & Shiwei Su & Jian Yang, 2021. "Numerical Study of Vibration Characteristics for Sensor Membrane in Transformer Oil," Energies, MDPI, vol. 14(6), pages 1-18, March.
    2. Marco Bindi & Maria Cristina Piccirilli & Antonio Luchetta & Francesco Grasso, 2023. "A Comprehensive Review of Fault Diagnosis and Prognosis Techniques in High Voltage and Medium Voltage Electrical Power Lines," Energies, MDPI, vol. 16(21), pages 1-37, October.
    3. Franciszek Witos & Aneta Olszewska, 2023. "Investigation of Partial Discharges within Power Oil Transformers by Acoustic Emission," Energies, MDPI, vol. 16(9), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaorui Qin & Siyuan Zhou & Taiyun Zhu & Shenglong Zhu & Jianlin Li & Zheran Zheng & Shuo Qin & Cheng Pan & Ju Tang, 2021. "Sinusoidal Noise Removal in PD Measurement Based on Synchrosqueezing Transform and Singular Spectrum Analysis," Energies, MDPI, vol. 14(23), pages 1-22, November.
    2. Franciszek Witos & Aneta Olszewska, 2023. "Investigation of Partial Discharges within Power Oil Transformers by Acoustic Emission," Energies, MDPI, vol. 16(9), pages 1-20, April.
    3. Daria Wotzka & Wojciech Sikorski & Cyprian Szymczak, 2022. "Investigating the Capability of PD-Type Recognition Based on UHF Signals Recorded with Different Antennas Using Supervised Machine Learning," Energies, MDPI, vol. 15(9), pages 1-20, April.
    4. Krzysztof Walczak & Wojciech Sikorski, 2021. "Non-Contact High Voltage Measurement in the Online Partial Discharge Monitoring System," Energies, MDPI, vol. 14(18), pages 1-20, September.
    5. Dmitry A. Ivanov & Marat F. Sadykov & Danil A. Yaroslavsky & Aleksandr V. Golenishchev-Kutuzov & Tatyana G. Galieva, 2021. "Non-Contact Methods for High-Voltage Insulation Equipment Diagnosis during Operation," Energies, MDPI, vol. 14(18), pages 1-16, September.
    6. Zbigniew Nadolny, 2022. "Impact of Changes in Limit Values of Electric and Magnetic Field on Personnel Performing Diagnostics of Transformers," Energies, MDPI, vol. 15(19), pages 1-15, October.
    7. Krzysztof Walczak, 2023. "Localization of HV Insulation Defects Using a System of Associated Capacitive Sensors," Energies, MDPI, vol. 16(5), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5955-:d:445242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.