IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1580-d516033.html
   My bibliography  Save this article

Integrative Scenario Assessment as a Tool to Support Decisions in Energy Transition

Author

Listed:
  • Jürgen Kopfmüller

    (Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology (KIT), 76133 Karlsruhe, Germany)

  • Wolfgang Weimer-Jehle

    (Center for Interdisciplinary Risk and Innovation Studies, University of Stuttgart, 70174 Stuttgart, Germany)

  • Tobias Naegler

    (German Aerospace Center (DLR), Institute for Networked Energy Systems, 70569 Stuttgart, Germany)

  • Jens Buchgeister

    (Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology (KIT), 76133 Karlsruhe, Germany)

  • Klaus-Rainer Bräutigam

    (Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology (KIT), 76133 Karlsruhe, Germany)

  • Volker Stelzer

    (Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology (KIT), 76133 Karlsruhe, Germany)

Abstract

Energy scenarios represent a prominent tool to support energy system transitions towards sustainability. In order to better fulfil this role, two elements are widely missing in previous work on designing, analyzing, and using scenarios: First, a more systematic integration of social and socio-technical characteristics of energy systems in scenario design, and, second, a method to apply an accordingly enhanced set of indicators in scenario assessment. In this article, an integrative scenario assessment methodology is introduced that combines these two requirements. It consists of: (i) A model-based scenario analysis using techno-economic and ecological indicators; (ii) a non-model-based analysis using socio-technical indicators; (iii) an assessment of scenario performances with respect to pre-determined indicator targets; (iv) a normalization method to make the two types of results (model-based and non-model-based) comparable; (v) an approach to classify results to facilitate structured interpretation. The combination of these elements represents the added-value of this methodology. It is illustrated for selected indicators, and exemplary results are presented. Methodological challenges and remaining questions, e.g., regarding the analysis of non-model-based indicators, resource requirements, or the robustness of the methodology are pointed out and discussed. We consider this integrative methodology being a substantial improvement of previous scenario assessment methodologies.

Suggested Citation

  • Jürgen Kopfmüller & Wolfgang Weimer-Jehle & Tobias Naegler & Jens Buchgeister & Klaus-Rainer Bräutigam & Volker Stelzer, 2021. "Integrative Scenario Assessment as a Tool to Support Decisions in Energy Transition," Energies, MDPI, vol. 14(6), pages 1-34, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1580-:d:516033
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1580/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1580/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kosow, Hannah & Gaßner, Robert, 2008. "Methods of future and scenario analysis: overview, assessment, and selection criteria," IDOS Studies, German Institute of Development and Sustainability (IDOS), volume 39, number 39, July.
    2. Tobias Junne & Sonja Simon & Jens Buchgeister & Maximilian Saiger & Manuel Baumann & Martina Haase & Christina Wulf & Tobias Naegler, 2020. "Environmental Sustainability Assessment of Multi-Sectoral Energy Transformation Pathways: Methodological Approach and Case Study for Germany," Sustainability, MDPI, vol. 12(19), pages 1-28, October.
    3. Vögele, Stefan & Hansen, Patrick & Poganietz, Witold-Roger & Prehofer, Sigrid & Weimer-Jehle, Wolfgang, 2017. "Building scenarios for energy consumption of private households in Germany using a multi-level cross-impact balance approach," Energy, Elsevier, vol. 120(C), pages 937-946.
    4. Nuri Cihat Onat & Murat Kucukvar & Anthony Halog & Scott Cloutier, 2017. "Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives," Sustainability, MDPI, vol. 9(5), pages 1-25, April.
    5. Child, Michael & Koskinen, Otto & Linnanen, Lassi & Breyer, Christian, 2018. "Sustainability guardrails for energy scenarios of the global energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 321-334.
    6. Thomas Pregger & Tobias Naegler & Wolfgang Weimer-Jehle & Sigrid Prehofer & Wolfgang Hauser, 2020. "Moving towards socio-technical scenarios of the German energy transition—lessons learned from integrated energy scenario building," Climatic Change, Springer, vol. 162(4), pages 1743-1762, October.
    7. Madlener, Reinhard & Kowalski, Katharina & Stagl, Sigrid, 2007. "New ways for the integrated appraisal of national energy scenarios: The case of renewable energy use in Austria," Energy Policy, Elsevier, vol. 35(12), pages 6060-6074, December.
    8. Pollesch, N.L. & Dale, V.H., 2016. "Normalization in sustainability assessment: Methods and implications," Ecological Economics, Elsevier, vol. 130(C), pages 195-208.
    9. Wolfgang Weimer-Jehle & Stefan Vögele & Wolfgang Hauser & Hannah Kosow & Witold-Roger Poganietz & Sigrid Prehofer, 2020. "Socio-technical energy scenarios: state-of-the-art and CIB-based approaches," Climatic Change, Springer, vol. 162(4), pages 1723-1741, October.
    10. Sala, Serenella & Ciuffo, Biagio & Nijkamp, Peter, 2015. "A systemic framework for sustainability assessment," Ecological Economics, Elsevier, vol. 119(C), pages 314-325.
    11. Christoph Schlenzig, 1999. "Energy planning and environmental management with the information and decision support system MESAP," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 12(1/2/3/4/5), pages 81-91.
    12. Jewell, Jessica & Cherp, Aleh & Riahi, Keywan, 2014. "Energy security under de-carbonization scenarios: An assessment framework and evaluation under different technology and policy choices," Energy Policy, Elsevier, vol. 65(C), pages 743-760.
    13. Weimer-Jehle, Wolfgang & Buchgeister, Jens & Hauser, Wolfgang & Kosow, Hannah & Naegler, Tobias & Poganietz, Witold-Roger & Pregger, Thomas & Prehofer, Sigrid & von Recklinghausen, Andreas & Schippl, , 2016. "Context scenarios and their usage for the construction of socio-technical energy scenarios," Energy, Elsevier, vol. 111(C), pages 956-970.
    14. Moslehi, Salim & Reddy, T. Agami, 2019. "A new quantitative life cycle sustainability assessment framework: Application to integrated energy systems," Applied Energy, Elsevier, vol. 239(C), pages 482-493.
    15. Denis Bouyssou & Thierry Marchant & Marc Pirlot & Alexis Tsoukiàs & Philippe Vincke, 2006. "Evaluation and Decision Models with Multiple Criteria," International Series in Operations Research and Management Science, Springer, number 978-0-387-31099-2, April.
    16. Jenny Pope & Alan A.M. Bond & Jean Huge & Angus Morrison-Saunders, 2017. "Reconceptualising sustainability assessment," ULB Institutional Repository 2013/242233, ULB -- Universite Libre de Bruxelles.
    17. Charlotte Senkpiel & Wolfgang Hauser, 2020. "Systemic Evaluation of the Effects of Regional Self-Supply Targets on the German Electricity System Using Consistent Scenarios and System Optimization," Energies, MDPI, vol. 13(18), pages 1-26, September.
    18. Eichhorn, Marcus & Masurowski, Frank & Becker, Raik & Thrän, Daniela, 2019. "Wind energy expansion scenarios – A spatial sustainability assessment," Energy, Elsevier, vol. 180(C), pages 367-375.
    19. Walker, Shalika & Labeodan, Timilehin & Boxem, Gert & Maassen, Wim & Zeiler, Wim, 2018. "An assessment methodology of sustainable energy transition scenarios for realizing energy neutral neighborhoods," Applied Energy, Elsevier, vol. 228(C), pages 2346-2360.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tobias Naegler & Lisa Becker & Jens Buchgeister & Wolfgang Hauser & Heidi Hottenroth & Tobias Junne & Ulrike Lehr & Oliver Scheel & Ricarda Schmidt-Scheele & Sonja Simon & Claudia Sutardhio & Ingela T, 2021. "Integrated Multidimensional Sustainability Assessment of Energy System Transformation Pathways," Sustainability, MDPI, vol. 13(9), pages 1-28, May.
    2. Lorafe Lozano & Evelyn B. Taboada, 2021. "The Power of Electricity: How Effective Is It in Promoting Sustainable Development in Rural Off-Grid Islands in the Philippines?," Energies, MDPI, vol. 14(9), pages 1-17, May.
    3. Donato Morea & Mohamad El Mehtedi & Pasquale Buonadonna, 2023. "Energy Context: Analysis of Selected Studies and Future Research Developments," Energies, MDPI, vol. 16(3), pages 1-6, February.
    4. Hannah Kosow & Sandra Wassermann & Stephan Bartke & Paul Goede & Detlef Grimski & Ines Imbert & Till Jenssen & Oliver Laukel & Matthias Proske & Jochen Protzer & Kim Philip Schumacher & Stefan Siedent, 2022. "Addressing Goal Conflicts: New Policy Mixes for Commercial Land Use Management," Land, MDPI, vol. 11(6), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vögele, Stefan & Poganietz, Witold-Roger & Kleinebrahm, Max & Weimer-Jehle, Wolfgang & Bernhard, Jesse & Kuckshinrichs, Wilhelm & Weiss, Annika, 2022. "Dissemination of PV-Battery systems in the German residential sector up to 2050: Technological diffusion from multidisciplinary perspectives," Energy, Elsevier, vol. 248(C).
    2. Thomas Pregger & Tobias Naegler & Wolfgang Weimer-Jehle & Sigrid Prehofer & Wolfgang Hauser, 2020. "Moving towards socio-technical scenarios of the German energy transition—lessons learned from integrated energy scenario building," Climatic Change, Springer, vol. 162(4), pages 1743-1762, October.
    3. Lhermie, Guillaume & Wernli, Didier & Jørgensen, Peter Søgaard & Kenkel, Donald & Lin Lawell, C.-Y. Cynthia & Tauer, Loren William & Gröhn, Yrjo Tapio, 2019. "Tradeoffs between resistance to antimicrobials in public health and their use in agriculture: Moving towards sustainability assessment," Ecological Economics, Elsevier, vol. 166(C), pages 1-1.
    4. Tobias Naegler & Lisa Becker & Jens Buchgeister & Wolfgang Hauser & Heidi Hottenroth & Tobias Junne & Ulrike Lehr & Oliver Scheel & Ricarda Schmidt-Scheele & Sonja Simon & Claudia Sutardhio & Ingela T, 2021. "Integrated Multidimensional Sustainability Assessment of Energy System Transformation Pathways," Sustainability, MDPI, vol. 13(9), pages 1-28, May.
    5. Anastasiia Moldavska & Torgeir Welo, 2018. "Testing and Verification of a New Corporate Sustainability Assessment Method for Manufacturing: A Multiple Case Research Study," Sustainability, MDPI, vol. 10(11), pages 1-40, November.
    6. Lisa Hanna Broska & Stefan Vögele & Hawal Shamon & Inga Wittenberg, 2022. "On the Future(s) of Energy Communities in the German Energy Transition: A Derivation of Transformation Pathways," Sustainability, MDPI, vol. 14(6), pages 1-31, March.
    7. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Angela Zinnai & Alberto Pardossi, 2018. "A Reflection of the Use of the Life Cycle Assessment Tool for Agri-Food Sustainability," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    8. Wolfgang Weimer-Jehle & Stefan Vögele & Wolfgang Hauser & Hannah Kosow & Witold-Roger Poganietz & Sigrid Prehofer, 2020. "Socio-technical energy scenarios: state-of-the-art and CIB-based approaches," Climatic Change, Springer, vol. 162(4), pages 1723-1741, October.
    9. Eleni Iacovidou & Jonathan Busch & John N. Hahladakis & Helen Baxter & Kok Siew Ng & Ben M. J. Herbert, 2017. "A Parameter Selection Framework for Sustainability Assessment," Sustainability, MDPI, vol. 9(9), pages 1-18, August.
    10. Rafael Horn & Hanaa Dahy & Johannes Gantner & Olga Speck & Philip Leistner, 2018. "Bio-Inspired Sustainability Assessment for Building Product Development—Concept and Case Study," Sustainability, MDPI, vol. 10(1), pages 1-25, January.
    11. Tobias Engelmann & Daniel Fischer & Marianne Lörchner & Jaya Bowry & Holger Rohn, 2019. "“Doing” Sustainability Assessment in Different Consumption and Production Contexts—Lessons from Case Study Comparison," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    12. Mier, Mathias & Siala, Kais & Govorukha, Kristina & Mayer, Philip, 2023. "Collaboration, decarbonization, and distributional effects," Applied Energy, Elsevier, vol. 341(C).
    13. Boggia, Antonio & Massei, Gianluca & Pace, Elaine & Rocchi, Lucia & Paolotti, Luisa & Attard, Maria, 2018. "Spatial multicriteria analysis for sustainability assessment: A new model for decision making," Land Use Policy, Elsevier, vol. 71(C), pages 281-292.
    14. Eniko Kovacs & Maria-Alexandra Hoaghia & Lacrimioara Senila & Daniela Alexandra Scurtu & Diana Elena Dumitras & Cecilia Roman, 2020. "Sustainability Problematization and Modeling Opportunities," Sustainability, MDPI, vol. 12(23), pages 1-26, December.
    15. Marco Cinelli & Matteo Spada & Wansub Kim & Yiwen Zhang & Peter Burgherr, 2021. "MCDA Index Tool: an interactive software to develop indices and rankings," Environment Systems and Decisions, Springer, vol. 41(1), pages 82-109, March.
    16. Troullaki, Katerina & Rozakis, Stelios & Kostakis, Vasilis, 2021. "Bridging barriers in sustainability research: Α review from sustainability science to life cycle sustainability assessment," Ecological Economics, Elsevier, vol. 184(C).
    17. Arjan Kirkels & Vince Evers & Gerrit Muller, 2021. "Systems Engineering for the Energy Transition: Potential Contributions and Limitations," Sustainability, MDPI, vol. 13(10), pages 1-13, May.
    18. Mercedes Luque‐Vílchez & José A. Gómez‐Limón & M. Dolores Guerrero‐Baena & Pablo Rodríguez‐Gutiérrez, 2023. "Deconstructing corporate environmental, social, and governance performance: Heterogeneous stakeholder preferences in the food industry," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1845-1860, June.
    19. Cinelli, Marco & Kadziński, Miłosz & Gonzalez, Michael & Słowiński, Roman, 2020. "How to support the application of multiple criteria decision analysis? Let us start with a comprehensive taxonomy," Omega, Elsevier, vol. 96(C).
    20. Bouw, Kathelijne & Noorman, Klaas Jan & Wiekens, Carina J. & Faaij, André, 2021. "Local energy planning in the built environment: An analysis of model characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1580-:d:516033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.