IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1486-d513280.html
   My bibliography  Save this article

Photovoltaic Inverter Profiles in Relation to the European Network Code NC RfG and the Requirements of Polish Distribution System Operators

Author

Listed:
  • Krzysztof Chmielowiec

    (Department of Power Electronics and Energy Control Systems, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, 30-059 Kraków, Poland)

  • Łukasz Topolski

    (Department of Power Electronics and Energy Control Systems, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, 30-059 Kraków, Poland)

  • Aleks Piszczek

    (Department of Power Electronics and Energy Control Systems, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, 30-059 Kraków, Poland)

  • Zbigniew Hanzelka

    (Department of Power Electronics and Energy Control Systems, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, 30-059 Kraków, Poland)

Abstract

The presently observed rapid increase in photovoltaic (PV) micro-installation connections to low-voltage networks, resulting from numerous financial support programmes, European Union (EU) energy policy and growing social awareness of environmental and economic issues, raise the question if PV inverters widely available in EU market fulfil the numerous technical requirements specified in European and Polish regulations. The paper presents the results of an experimental study carried out on three PV Inverters widely available in the EU in accordance with the EU network code NC RfG, standard EN 50549-1:2019 and internal Polish distribution system operators’ (DSOs’) regulations, governing PV inverter cooperation with the low-voltage distribution network. The laboratory test stand scheme and its description are presented. In each test, at least one of the inverters encountered issues, either with the operation in required frequency ranges (one PV inverter), activating reactive power control modes (all three PV inverters), maintaining required power generation gradient after tripping (one PV inverter) or under-voltage ride through immunity (one PV inverter). The obtained results have shown that all tested PV inverters did not meet requirements that are the key to maintaining reliable and safe operation of transmission and distribution electrical networks.

Suggested Citation

  • Krzysztof Chmielowiec & Łukasz Topolski & Aleks Piszczek & Zbigniew Hanzelka, 2021. "Photovoltaic Inverter Profiles in Relation to the European Network Code NC RfG and the Requirements of Polish Distribution System Operators," Energies, MDPI, vol. 14(5), pages 1-24, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1486-:d:513280
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1486/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1486/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krzysztof Księżopolski & Mirosław Drygas & Kamila Pronińska & Iwona Nurzyńska, 2020. "The Economic Effects of New Patterns of Energy Efficiency and Heat Sources in Rural Single-Family Houses in Poland," Energies, MDPI, vol. 13(23), pages 1-19, December.
    2. Gregorio Fernández & Noemi Galan & Daniel Marquina & Diego Martínez & Alberto Sanchez & Pablo López & Hans Bludszuweit & Jorge Rueda, 2020. "Photovoltaic Generation Impact Analysis in Low Voltage Distribution Grids," Energies, MDPI, vol. 13(17), pages 1-27, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gökay Bayrak & Davut Ertekin & Hassan Haes Alhelou & Pierluigi Siano, 2021. "A Real-Time Energy Management System Design for a Developed PV-Based Distributed Generator Considering the Grid Code Requirements in Turkey," Energies, MDPI, vol. 14(20), pages 1-21, October.
    2. Krzysztof Chmielowiec & Łukasz Topolski & Aleks Piszczek & Tomasz Rodziewicz & Zbigniew Hanzelka, 2022. "Study on Energy Efficiency and Harmonic Emission of Photovoltaic Inverters," Energies, MDPI, vol. 15(8), pages 1-23, April.
    3. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2021. "Macroeconomic Efficiency of Photovoltaic Energy Production in Polish Farms," Energies, MDPI, vol. 14(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Gradziuk & Aleksandra Siudek & Anna M. Klepacka & Wojciech J. Florkowski & Anna Trocewicz & Iryna Skorokhod, 2022. "Heat Pump Installation in Public Buildings: Savings and Environmental Benefits in Underserved Rural Areas," Energies, MDPI, vol. 15(21), pages 1-16, October.
    2. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    3. Vitor Fernão Pires & Armando Pires & Armando Cordeiro, 2023. "DC Microgrids: Benefits, Architectures, Perspectives and Challenges," Energies, MDPI, vol. 16(3), pages 1-20, January.
    4. Leszek Dziawgo, 2021. "Energy Sectors on Capital Market – Financing the Process “Towards Sustainability”," European Research Studies Journal, European Research Studies Journal, vol. 0(2B), pages 938-955.
    5. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2021. "Macroeconomic Efficiency of Photovoltaic Energy Production in Polish Farms," Energies, MDPI, vol. 14(18), pages 1-19, September.
    6. Sławomir Kurpaska & Katarzyna Wolny-Koładka & Mateusz Malinowski & Klaudia Tomaszek & Hubert Latała, 2023. "Thermal-Mass and Microbiological Analysis of Forced Air Flow through the Stone Heat Accumulator Bed," Energies, MDPI, vol. 16(11), pages 1-22, May.
    7. Jin-Li Hu & Min-Yueh Chuang, 2023. "The Importance of Energy Prosumers for Affordable and Clean Energy Development: A Review of the Literature from the Viewpoints of Management and Policy," Energies, MDPI, vol. 16(17), pages 1-16, August.
    8. Piotr Michalak & Krzysztof Szczotka & Jakub Szymiczek, 2021. "Energy Effectiveness or Economic Profitability? A Case Study of Thermal Modernization of a School Building," Energies, MDPI, vol. 14(7), pages 1-21, April.
    9. Alnaser, Sahban W. & Althaher, Sereen Z. & Long, Chao & Zhou, Yue & Wu, Jianzhong & Hamdan, Reem, 2021. "Transition towards solar Photovoltaic Self-Consumption policies with Batteries: From the perspective of distribution networks," Applied Energy, Elsevier, vol. 304(C).
    10. Dariusz Kusz & Iwona Bąk & Beata Szczecińska & Ludwik Wicki & Bożena Kusz, 2022. "Determinants of Return-on-Equity (ROE) of Biogas Plants Operating in Poland," Energies, MDPI, vol. 16(1), pages 1-22, December.
    11. Gregorio Fernández & Alejandro Martínez & Noemí Galán & Javier Ballestín-Fuertes & Jesús Muñoz-Cruzado-Alba & Pablo López & Simon Stukelj & Eleni Daridou & Alessio Rezzonico & Dimosthenis Ioannidis, 2021. "Optimal D-STATCOM Placement Tool for Low Voltage Grids," Energies, MDPI, vol. 14(14), pages 1-31, July.
    12. Anju Yadav & Nand Kishor & Richa Negi, 2023. "Bus Voltage Violations under Different Solar Radiation Profiles and Load Changes with Optimally Placed and Sized PV Systems," Energies, MDPI, vol. 16(2), pages 1-23, January.
    13. Zakeri, Behnam & Gissey, Giorgio Castagneto & Dodds, Paul E. & Subkhankulova, Dina, 2021. "Centralized vs. distributed energy storage – Benefits for residential users," Energy, Elsevier, vol. 236(C).
    14. Nicola Francescutto & Nicole A. Mathys, 2022. "The Effect of the Swiss CO 2 Levy on Heating Fuel Demand of Private Real Estate Owners," Energies, MDPI, vol. 15(9), pages 1-21, April.
    15. Dominika Siwiec & Andrzej Pacana, 2021. "Model of Choice Photovoltaic Panels Considering Customers’ Expectations," Energies, MDPI, vol. 14(18), pages 1-32, September.
    16. Łukasz Mazur & Zbigniew Kłosowski, 2023. "A New Approach to the Use of Energy from Renewable Sources in Low-Voltage Power Distribution Networks," Energies, MDPI, vol. 16(2), pages 1-29, January.
    17. Roman Korab & Marcin Połomski & Marcin Smołka, 2022. "Evaluating the Risk of Exceeding the Normal Operating Conditions of a Low-Voltage Distribution Network due to Photovoltaic Generation," Energies, MDPI, vol. 15(6), pages 1-35, March.
    18. Eduardo Bassolino & Maria Cerreta, 2021. "Climate Adaptive Design Index for the Built Environment (CADI-BE): An Assessment System of the Adaptive Capacity to Urban Temperatures Increase," Energies, MDPI, vol. 14(15), pages 1-35, July.
    19. Oscar Danilo Montoya & Carlos Andrés Ramos-Paja & Luis Fernando Grisales-Noreña, 2022. "An Efficient Methodology for Locating and Sizing PV Generators in Radial Distribution Networks Using a Mixed-Integer Conic Relaxation," Mathematics, MDPI, vol. 10(15), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1486-:d:513280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.